期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Research on Transmission Line Tower Tilting and Foundation State Monitoring Technology Based onMulti-Sensor Cooperative Detection and Correction
1
作者 Guangxin Zhang Minghui Liu +4 位作者 Shichao Cheng Minzhen Wang Changshun Zhao Hongdan Zhao Gaiming Zhong 《Energy Engineering》 EI 2024年第1期169-185,共17页
The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi... The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation. 展开更多
关键词 Transmission line tower tilting MULTI-SENSOR foundation state monitoring collaborative detection
下载PDF
Research on information technology of state monitoring and fault prediction for mechatronics system 被引量:1
2
作者 Xu Xiaoli Zuo Yunbo +2 位作者 Meng Lingxia Zhao Xiwei Liu Xiuli 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第S1期139-145,共7页
The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.B... The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance. 展开更多
关键词 mechatronics system information technology state monitoring fault prediction
下载PDF
State Maintenance of On-line Monitoring for High Voltage Equipment
3
《Electricity》 1997年第2期35-36,共2页
关键词 LINE state Maintenance of On-line monitoring for High Voltage Equipment
下载PDF
Application of GIS and GPS technologies in managing a statewide groundwater monitoring and assessment network in the state of Minnesota,USA
4
《Global Geology》 1998年第1期85-85,共1页
关键词 GIS GPS Application of GIS and GPS technologies in managing a statewide groundwater monitoring and assessment network in the state of Minnesota USA USA
下载PDF
Wave height estimation using the singular peaks in the sea echoes of high frequency radar 被引量:1
5
作者 ZHOU Hao WEN Biyang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第1期108-114,共7页
The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improv... The popular methods to estimate wave height with high-frequency(HF) radar depend on the integration over the second-order spectral region and thus may come under from even not strong external interference. To improve the accuracy and increase the valid detection range of the wave height measurement, particularly by the smallaperture radar, it is turned to singular peaks which often exceed the power of other frequency components. The power of three kinds of singular peaks, i.e., those around ±1,±√2 and ±1√2 times the Bragg frequency, are retrieved from a one-month-long radar data set collected by an ocean state monitoring and analyzing radar,model S(OSMAR-S), and in situ buoy records are used to make some comparisons. The power response to a wave height is found to be described with a new model quite well, by which obvious improvement on the wave height estimation is achieved. With the buoy measurements as reference, a correlation coefficient is increased to 0.90 and a root mean square error(RMSE) is decreased to 0.35 m at the range of 7.5 km compared with the results by the second-order method. The further analysis of the fitting performance across range suggests that the peak has the best fit and maintains a good performance as far as 40 km. The correlation coefficient is 0.78 and the RMSE is 0.62 m at 40 km. These results show the effectiveness of the new empirical method, which opens a new way for the wave height estimation with the HF radar. 展开更多
关键词 high frequency radar wave height Bragg peak singular peak ocean state monitoring and analyzing radar
下载PDF
Comparison of aerosol optical depth of UV-B Monitoring and Research Program (UVMRP), AERONET and MODIS over continental United States
6
作者 Hongzhao TANG Maosi CHEN +1 位作者 John DAVIS Wei GAO 《Frontiers of Earth Science》 SCIE CAS CSCD 2013年第2期129-140,共12页
The concern about the role of aerosols as to their effect in the Earth-Atmosphere system requires observation at multiple temporal and spatial scales. The Moderate Resolution Imaging Spectroradiameters (MODIS) is th... The concern about the role of aerosols as to their effect in the Earth-Atmosphere system requires observation at multiple temporal and spatial scales. The Moderate Resolution Imaging Spectroradiameters (MODIS) is the main aerosol optical depth (AOD) monitoring satellite instrument, and its accuracy and uncertainty need to be validated against ground based measurements routinely. The comparison between two ground AOD measurement programs, the United States Department of Agriculture (USDA) Ultmviolet-B Monitoring and Research Program (UVMRP) and the Aerosol Robotic Network (AERONET) program, confirms the consistency between them. The intercomparison between the MODIS AOD, the AERONET AOD, and the UVMRP AOD suggests that the UVMRP AOD measurements are suited to be an alternative ground-based validation source for satellite AOD products. The experiments show that the spatial-temporal dependency between the MODIS AOD and the UVMRP AOD is positive in the sense that the MODIS AOD compare more favorably with the UVMRP AOD as the spatial and temporal intervals are increased. However, the analysis shows that the optimal spatial interval for all time windows is defined by an angular subtense of around 1° to 1.25°, while the optimal time window is around 423 to 483 minutes at most spatial intervals. The spatial-temporal approach around 1.25° & 423 minutes shows better agreement than the prevalent strategy of 0.25° & 60 minutes found in other similar investigations. 展开更多
关键词 aerosol optical depth (AOD) United states Department of Agriculture (USDA) UV-B monitoring andResearch Program (UVMRP) Aerosol Robotic Network (AERONET) Moderate Resolution Imaging Spectmradiameters (MODIS) validation spatial-temporal approach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部