期刊文献+
共找到631篇文章
< 1 2 32 >
每页显示 20 50 100
Reduced Switching-Frequency State of Charge Balancing Strategy for Battery Integrated Modular Multilevel Converter
1
作者 HU Xing ZHANG Jianzhong 《Journal of Donghua University(English Edition)》 CAS 2021年第6期504-510,共7页
A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)ba... A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings. 展开更多
关键词 battery management system(BMS) energy storage system modular multilevel converter reduced switching-frequency(RSF) state of charge(soc)balancing
下载PDF
Fuzzy Model for Estimation of the State-of-Charge of Lithium-Ion Batteries for Electric Vehicles 被引量:4
2
作者 胡晓松 孙逢春 程夕明 《Journal of Beijing Institute of Technology》 EI CAS 2010年第4期416-421,共6页
A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was appli... A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications. 展开更多
关键词 state of charge(soc lithium-ion battery fuzzy identification Gustafson-Kessel(GK) clustering electric vehicle
下载PDF
Lithium battery state of charge and state of health prediction based on fuzzy Kalman filtering 被引量:1
3
作者 Daniil Fadeev ZHANG Xiao-zhou +2 位作者 DONG Hai-ying LIU Hao ZHANG Rui-ping 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期63-69,共7页
This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The m... This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The model parameters are estimated by searching least square error optimization algorithm.Precisely defined by this method,the model parameters allow to accurately determine the capacity of the battery,which in turn allows to specify the SOC prediction value used as a basis for the SOH value.Application of the extended Kalman filter(EKF)removes the need of prior known initial SOC,and applying the fuzzy logic helps to eliminate the measurement and process noise.Simulation results obtained during the urban dynamometer driving schedule(UDDS)test show that the maximum error in estimation of the battery SOC is 0.66%.Battery capacity is estimate by offline updated Kalman filter,and then SOH will be predicted.The maximum error in estimation of the battery capacity is 1.55%. 展开更多
关键词 lithium battery state of charge(soc) state of health(SOH) adaptive extended Kalman filter(AEKF)
下载PDF
Adaptive Kalman filter based state of charge estimation algorithm for lithium-ion battery
4
作者 郑宏 刘煦 魏旻 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期581-587,共7页
In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, ... In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded. 展开更多
关键词 state of charge(soc estimation TEMPERATURE charge rate adaptive Kalman filter
下载PDF
Kalman Filters versus Neural Networks in Battery State-of-Charge Estimation: A Comparative Study 被引量:1
5
作者 Ala A. Hussein 《International Journal of Modern Nonlinear Theory and Application》 2014年第5期199-209,共11页
Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC es... Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC estimation requirements and methods vary from an application to another. This paper compares two SOC estimation methods, namely extended Kalman filters (EKF) and artificial neural networks (ANN). EKF is a nonlinear optimal estimator that is used to estimate the inner state of a nonlinear dynamic system using a state-space model. On the other hand, ANN is a mathematical model that consists of interconnected artificial neurons inspired by biological neural networks and is used to predict the output of a dynamic system based on some historical data of that system. A pulse-discharge test was performed on a commercial lithium-ion (Li-ion) battery cell in order to collect data to evaluate those methods. Results are presented and compared. 展开更多
关键词 Artificial NEURAL Network (ANN) BATTERY Extended KALMAN Filter (EKF) state-OF-charge (soc)
下载PDF
考虑应力特征的锂离子电池SOC估算 被引量:2
6
作者 徐元中 章俊 +1 位作者 常春 姜久春 《电池》 CAS 北大核心 2024年第4期477-481,共5页
准确估计荷电状态(SOC)是保证锂离子电池可靠运行的基础。提出基于多维特征特别是结合力信号的数据驱动的SOC估算方法,对锂离子电池应力特征进行Savitzky-Golay(S-G)滤波,形成优化重构后的应力信号。提出基于麻雀搜索算法(SSA)改进的反... 准确估计荷电状态(SOC)是保证锂离子电池可靠运行的基础。提出基于多维特征特别是结合力信号的数据驱动的SOC估算方法,对锂离子电池应力特征进行Savitzky-Golay(S-G)滤波,形成优化重构后的应力信号。提出基于麻雀搜索算法(SSA)改进的反向传播(BP)神经网络,提高神经网络的全局寻优能力。用恒流(CC)、联邦城市驾驶工况(FUDS)进行评估。在BP神经网络中,相比于单纯使用电信号,考虑应力特征的SOC估算的均方根误差(RMSE)降低89.1%,平均绝对误差(MAE)降低88.8%,考虑应力特征的SSA-BP神经网络的SOC估算误差在0.3%以内,鲁棒性和精确性更高。 展开更多
关键词 荷电状态(soc) 锂离子电池 应力 神经网络 麻雀搜索算法(SSA)
下载PDF
基于CSO-AUKF的锂电池SOC估算方法 被引量:1
7
作者 吴华伟 洪强 +1 位作者 陈运星 马毓博 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期118-126,共9页
电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨... 电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨识精度,联合AUKF算法对SOC进行估算;基于混合脉冲功率测试工况(HPPC)和间歇恒流放电工况下的数据对该方法有效性进行了验证。研究结果表明:基于CSO-AUKF估算,SOC最大误差小于1.64%,估算精度及稳定性均好于遗传算法。 展开更多
关键词 车辆工程 锂电池汽车 荷电状态(soc) 猫群(CSO)算法 自适应无迹卡尔曼滤波(AUKF)算法
下载PDF
适用于宽温度范围的锂离子电池SOC估计方法 被引量:1
8
作者 胡雪峰 常先雷 +2 位作者 刘肖肖 徐威 张文彬 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期2983-2994,共12页
精确的荷电状态(SOC)估计是确保动力电池安全稳定运行的关键所在。然而,在实际应用中,环境温度的变化以及噪声干扰等因素使得SOC的精确估计变得困难重重。为了解决这一问题,本文提出一种基于多新息自适应鲁棒无迹卡尔曼滤波(MIARUKF)算... 精确的荷电状态(SOC)估计是确保动力电池安全稳定运行的关键所在。然而,在实际应用中,环境温度的变化以及噪声干扰等因素使得SOC的精确估计变得困难重重。为了解决这一问题,本文提出一种基于多新息自适应鲁棒无迹卡尔曼滤波(MIARUKF)算法的宽温度范围下锂离子电池SOC多时间尺度联合估计方法,该算法在无迹卡尔曼滤波(UKF)算法的基础上,融合多新息理论、自适应滤波与鲁棒算法。所提算法利用多新息向量对状态估计值进行修正,并对噪声协方差进行及时更新,从而提高SOC的估计精度,通过引入H∞滤波算法来提高该算法的鲁棒性。同时为了降低电池管理系统(BMS)的计算负担,使用UKF算法在宏观时间尺度上在线估计模型参数,采用MIARUKF算法在微观时间尺度上估计电池SOC。最后,在不同SOC初始值、不同温度条件下,对电池SOC的估计结果进行比较和分析,本文所提方法最大绝对误差和平均绝对误差分别为1.05%和0.42%,表明该算法具有较高的精度和较好的鲁棒性。 展开更多
关键词 锂离子电池 荷电状态 多温度 多新息自适应鲁棒无迹卡尔曼滤波
下载PDF
基于AR-ECM平均差异模型的串联电池组SOC、容量多尺度联合估计方法 被引量:1
9
作者 刘芳 余丹 +1 位作者 苏卫星 卜凡涛 《中国电机工程学报》 EI CSCD 北大核心 2024年第10期3937-3948,I0016,共13页
考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM... 考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。 展开更多
关键词 串联电池组 自回归等效电路模型 平均差异模型 容量 荷电状态 H无穷滤波
下载PDF
温度自适应SMO算法估计锂离子电池的SOC
10
作者 吕高 樊郭宇 +2 位作者 张嘉蕾 杜君莉 史书怀 《电池》 CAS 北大核心 2024年第3期334-339,共6页
现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式... 现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式,通过台风(Typhoon)系统进行半实物实验分析。温度自适应SMO算法在低温或常温工况下的平均误差较传统SMO算法降低0.3~0.5个百分点,直接通过拟合式所快速估计的SOC较温度自适应SMO算法平均误差在2%左右,常温25℃工况下误差低于1%,能够实现较高的估计精准度,为快速估计SOC提供了较好的算法参考。 展开更多
关键词 荷电状态(soc)估计 滑模观测(SMO) 温度影响 锂离子电池 半实物实验分析
下载PDF
引入PID反馈的SHAEKF算法估算电池SOC
11
作者 蔡黎 向丽红 +1 位作者 晏娟 徐青山 《电池》 CAS 北大核心 2024年第1期47-51,共5页
电池荷电状态(SOC)的估算精度是电动汽车电池组的重要指标。为提升SOC估算精度,在融合Sage-Husa扩展卡尔曼滤波(SHEKF)算法与自适应扩展卡尔曼滤波(AEKF)算法的基础上,增加比例积分微分(PID)反馈环节,形成改进算法。采用粒子群优化(PSO... 电池荷电状态(SOC)的估算精度是电动汽车电池组的重要指标。为提升SOC估算精度,在融合Sage-Husa扩展卡尔曼滤波(SHEKF)算法与自适应扩展卡尔曼滤波(AEKF)算法的基础上,增加比例积分微分(PID)反馈环节,形成改进算法。采用粒子群优化(PSO)算法对二阶RC等效电路模型进行参数辨识;用开源电池数据集对模型和算法进行实验和分析。改进的SHAEKF算法在电池动态应力测试(DST)、北京动态应力测试(BJDST)和美国联邦城市驾驶(FUDS)等工况下的平均估计误差都在1%以内,与单纯的融合算法SHAEKF算法相比,最大误差可减小5%。 展开更多
关键词 荷电状态(soc)估算 二阶RC等效电路模型 比例积分微分(PID) 粒子群优化(PSO)算法 自适应扩展卡尔曼滤波(AEKF)
下载PDF
基于多新息扩展卡尔曼滤波的锂离子电池SOC估计
12
作者 吴胜利 欧华 邢文婷 《科学技术与工程》 北大核心 2024年第16期6742-6748,共7页
锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(state of charge, SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元... 锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(state of charge, SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(multi innovation extended Kalman filter, MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。 展开更多
关键词 锂离子电池 分数阶模型 多新息理论 扩展卡尔曼滤波(EKF) 荷电状态(soc)
下载PDF
基于SOC的串联连接锂电池能量均衡控制研究 被引量:1
13
作者 马春艳 王庆龙 +1 位作者 张迪 张纯江 《电源学报》 CSCD 北大核心 2024年第2期216-223,共8页
串联锂电池的SOC均衡控制对提高电池寿命具有重要意义。针对锂电池单体SOC表现出离散性的不同情况,本文研究了一种主动均衡与被动均衡相结合的混合均衡方案,其中主动均衡器拓扑由多绕组反激变换器实现,被动均衡器由电阻与开关组成并联... 串联锂电池的SOC均衡控制对提高电池寿命具有重要意义。针对锂电池单体SOC表现出离散性的不同情况,本文研究了一种主动均衡与被动均衡相结合的混合均衡方案,其中主动均衡器拓扑由多绕组反激变换器实现,被动均衡器由电阻与开关组成并联在单体电池两端,详细分析了混合均衡器的工作原理。在控制策略上讨论了锂电池SOC的离散性对均衡速度的影响,引入表征SOC离散度的标准差和表征离散原因的系数以实现SOC不同离散情况下的快速均衡。所提出的混合均衡器拓扑和控制方案能够使耗能与均衡速度获得优化,实验结果验证了文中理论的可行性。 展开更多
关键词 锂电池 能量均衡 soc离散性 主动均衡
下载PDF
基于注意力机制和CNN-LSTM融合模型的锂电池SOC预测 被引量:1
14
作者 张帅涛 蒋品群 +1 位作者 宋树祥 夏海英 《电源学报》 CSCD 北大核心 2024年第5期269-277,共9页
为提高锂电池荷电状态SOC(state-of-charge)预测精度,提出1种基于注意力机制和卷积神经网络-长短时记忆CNN-LSTM(convolution neural network-long short-term memory)融合模型的锂电池荷电状态预测方法。该模型采用一维CNN和LSTM神经... 为提高锂电池荷电状态SOC(state-of-charge)预测精度,提出1种基于注意力机制和卷积神经网络-长短时记忆CNN-LSTM(convolution neural network-long short-term memory)融合模型的锂电池荷电状态预测方法。该模型采用一维CNN和LSTM神经网络学习得到SOC与锂电池放电数据的非线性关系,以及SOC序列存在的长期依赖性。同时,该模型采用“多对一”的结构,将当前时刻的锂电池SOC与多个历史时刻的放电数据建立映射关系,并通过注意力机制关注到对当前时刻SOC影响较大的历史放电数据,进一步提升SOC的预测准确度。动态工况下的锂电池SOC预测实验表明,该方法在不同温度条件下的平均预测误差为0.89%,与SVM、GRU和XGBoost相比,分别降低了81.2%、66.7%和56.5%,且优于未融合注意力机制的LSTM和CNN-LSTM,具有较高的预测精度和应用价值。 展开更多
关键词 锂电池 荷电状态 卷积神经网络 长短时记忆神经网络 注意力机制
下载PDF
基于自适应动态滑动窗口的锂电池参数辨识与SOC协同估计 被引量:1
15
作者 朱业 陈渊睿 +1 位作者 陈阳 王镇霖 《电气传动》 2024年第2期12-20,64,共10页
锂电池的安全高效运行依赖于准确的荷电状态(SOC)估计,但是传统的电池模型和SOC协同估计在噪声干扰下的鲁棒性和可靠性较差。针对噪声干扰下SOC协同估计问题,首先对电池的最大可用容量和电池开路电压(OCV)特性进行分析,研究了锂电池SOC... 锂电池的安全高效运行依赖于准确的荷电状态(SOC)估计,但是传统的电池模型和SOC协同估计在噪声干扰下的鲁棒性和可靠性较差。针对噪声干扰下SOC协同估计问题,首先对电池的最大可用容量和电池开路电压(OCV)特性进行分析,研究了锂电池SOC—OCV的曲线特性。然后研究了噪声干扰下的在线模型参数辨识和SOC估计问题,提出了基于自适应动态滑动窗口的双粒子群协同优化参数辨识(TCPSO)方法,通过实验验证了所提方法的SOC估计最大误差小于1%,表明所提方法可实现在线参数辨识,并且在抗噪性能和SOC估计精度等方面均优于现有协同估计方法。 展开更多
关键词 荷电状态估计 噪声干扰 参数辨识 双粒子群协同优化参数辨识
下载PDF
分数一阶电路等效模型估计锂离子电池SOC 被引量:1
16
作者 徐鹏跃 张国玲 +1 位作者 王涛 程佳 《电池》 CAS 北大核心 2024年第1期72-76,共5页
等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,... 等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,通过扩展卡尔曼滤波算法估计荷电状态(SOC)。对比模型预测的端电压与真实端电压,以及估计所得SOC与真实SOC,发现整数一阶模型估计SOC的误差约为8%,整数二阶模型的误差约为7%,而分数一阶模型的误差仅约为1%。 展开更多
关键词 等效电路模型 整数阶模型 分数阶模型 荷电状态(soc) 基于遗忘因子的递推最小二乘(FFRLS)法
下载PDF
21700锂离子电池在不同SOC下的热失控实验研究
17
作者 朱亚宁 张振东 +4 位作者 盛雷 陈龙 朱泽华 付林祥 毕青 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第2期218-225,共8页
为提升电池热安全、减少新能源汽车热灾害,揭示不同荷电状态(SOC)下对电池热失控危害的影响机制。在SOC为100%~0%几个荷电状态下研究了21700锂电池的热失控特性,包括电池在热失控当中的表面温度、工作电压、质量损失、能量、TNT当量和... 为提升电池热安全、减少新能源汽车热灾害,揭示不同荷电状态(SOC)下对电池热失控危害的影响机制。在SOC为100%~0%几个荷电状态下研究了21700锂电池的热失控特性,包括电池在热失控当中的表面温度、工作电压、质量损失、能量、TNT当量和破坏半径等。结果表明:电池的温升幅度随SOC的增大而升高,高电量电池热失控触发所需的时间更短,100%SOC电池在603 s触发热失控,相比于25%SOC缩短了59.1%,其危险系数更大;SOC越大,电池热失控后的质量损失也越大;电池热失控过程释放的能量、TNT当量与破坏半径均随SOC的增加而增大,电池的热失控危害性与SOC之间呈现出正相关关系。 展开更多
关键词 锂离子电池 荷电状态(soc) 热失控 破坏半径
下载PDF
面向充放电工况的LiFePO_(4)电池迟滞性建模及SOC估计
18
作者 梁莹 孙涛 郑岳久 《电源学报》 CSCD 北大核心 2024年第6期207-216,共10页
针对磷酸铁锂电池(LiFePO_(4))平坦的开路电压OCV(open circuit voltage)与荷电状态SOC(state of charge)滞回特性在充、放电切换工况下传统等效电路模型估计OCV存在精度较低的问题,提出电池迟滞建模。为了突出LiFePO_(4)电池考虑滞回... 针对磷酸铁锂电池(LiFePO_(4))平坦的开路电压OCV(open circuit voltage)与荷电状态SOC(state of charge)滞回特性在充、放电切换工况下传统等效电路模型估计OCV存在精度较低的问题,提出电池迟滞建模。为了突出LiFePO_(4)电池考虑滞回特性的必要性,对3种电池模型的复杂性、准确性和适用性进行综合评价和对比分析。结果表明,一阶RC模型不考虑滞回的影响,仅适用纯充电或纯放电的工况;一阶RC滞回模型在一阶RC模型的基础上增加1个滞回量,虽考虑了滞回特性的影响,但滞回量受参数辨识影响较大,OCV估计存在波动;Preisach模型对存在充、放电切换工况的估算精度较好,但训练数据时间成本较高。NEDC(new European driving cycle)充、放电工况下对不同模型结合算法估计SOC,估计误差均在5%以内,其中Preisach误差在3%以内。 展开更多
关键词 LiFePO_(4)电池 OCV-soc迟滞特性 等效电路模型 PREISACH模型 soc估计
下载PDF
多元宇宙优化估算锂离子电池的SOC与SOH
19
作者 朱冰 夏天 《电池》 CAS 北大核心 2024年第5期688-692,共5页
估计电池的荷电状态(SOC)和健康状态(SOH)是锂离子电池管理中最复杂的任务之一。目前,针对SOC和SOH的估计存在跟踪值误差较大、噪声误差较大和计算量大等问题,引入多元宇宙优化(MVO)算法,对照电池的实际输出电压,模型的拟合度可达95.3%... 估计电池的荷电状态(SOC)和健康状态(SOH)是锂离子电池管理中最复杂的任务之一。目前,针对SOC和SOH的估计存在跟踪值误差较大、噪声误差较大和计算量大等问题,引入多元宇宙优化(MVO)算法,对照电池的实际输出电压,模型的拟合度可达95.3%。通过14次迭代得到SOC的稳定估计值,与传统的循环次数法对比,SOH估计的稳定性提高了119%,并减小了78%的计算空间需求。 展开更多
关键词 算法 状态估计 多元宇宙优化(MVO) 荷电状态(soc) 健康状态(SOH) 储能
下载PDF
考虑能量效率和SOC均衡的电池储能电站双层功率分配策略 被引量:1
20
作者 叶晖 李爱魁 +2 位作者 田刚领 谢佳 李占军 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5185-5195,I0014,共12页
电化学储能电站在应用于调频、调压等功率波动性工况时,存在能量效率较低、荷电状态(state of charge,SOC)不均衡等问题。该文提出考虑能量效率和SOC均衡的电池储能电站双层功率分配策略,其主要包括单元优化层和子系统优化层:单元优化... 电化学储能电站在应用于调频、调压等功率波动性工况时,存在能量效率较低、荷电状态(state of charge,SOC)不均衡等问题。该文提出考虑能量效率和SOC均衡的电池储能电站双层功率分配策略,其主要包括单元优化层和子系统优化层:单元优化层通过充电/放电优先级分区计算实际运行单元数量及其编号,建立以储能单元能耗最小为目标的优化模型,并采用遗传算法求解最优解集;子系统优化层引入基于电化学阻抗的电池能耗模型,以储能子系统能耗最低和SOC均衡为目标建立多目标优化模型,并采用非支配快速排序遗传算法(non-dominated sorting genetic algorithms-II,NSGA-II)进行求解。通过某地区锂电池储能电站实际参数验证所提策略的有效性,结果表明,与SOC比例分配策略和单层功率分配策略相比,所提功率分配策略在降低电站能耗的同时能最大程度实现SOC均衡,保障电站双向调节能力,提高储能电站经济性。 展开更多
关键词 储能电站 功率分配策略 能量效率 荷电状态均衡 非支配快速排序遗传算法
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部