State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure...State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.展开更多
Most of the networks are generally less energy efficient and most of the time resources are underutilized. Even resources of busy networks are also underutilized and thus networks show energy inefficient management sy...Most of the networks are generally less energy efficient and most of the time resources are underutilized. Even resources of busy networks are also underutilized and thus networks show energy inefficient management system. This paper focuses on how to obtain minimum resources for the current situation of the network to maintain connectivity, power saving and quality of service. Four different models are proposed in this perspective with different purposes and functions. These models determine the minimum resources under certain constrains. Two types of services namely, "minimum bandwidth" and "trivial file transfer" are considered. For "minimum bandwidth" service, minimum edge, minimum delay and minimum change models are proposed. Here data rate switch and enable/disable of edges are placed in these models for power saving strategy. Another model, multi flow is proposed for "trivial file transfer" service. It is proposed for transferring files through multiple flows in multiple paths from source to destination. All models except multi flow model are mixed integer programming optimization problem.展开更多
With the integration of information technologies, power system operations are increasingly threatened by cyber-attacks. It has even been revealed that an attacker can inject false data into real-time measurements stea...With the integration of information technologies, power system operations are increasingly threatened by cyber-attacks. It has even been revealed that an attacker can inject false data into real-time measurements stealthily without knowing the full configuration(e.g., network topology) of a power system. In this paper, we present a comprehensive review on false data injection attacks which utilize barrier conditions, blind identification techniques and data driven approaches to overcome limitations of incomplete network information. We also point out future research topics for facilitating the detection and prevention of such false data attacks.展开更多
基金supported in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515111100+1 种基金in part by the National Natural Science Foundation of China under Grant 52207106in part by the Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(China Electric Power Research Institute)under Grant KJ80-21-001.
文摘State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.
文摘Most of the networks are generally less energy efficient and most of the time resources are underutilized. Even resources of busy networks are also underutilized and thus networks show energy inefficient management system. This paper focuses on how to obtain minimum resources for the current situation of the network to maintain connectivity, power saving and quality of service. Four different models are proposed in this perspective with different purposes and functions. These models determine the minimum resources under certain constrains. Two types of services namely, "minimum bandwidth" and "trivial file transfer" are considered. For "minimum bandwidth" service, minimum edge, minimum delay and minimum change models are proposed. Here data rate switch and enable/disable of edges are placed in these models for power saving strategy. Another model, multi flow is proposed for "trivial file transfer" service. It is proposed for transferring files through multiple flows in multiple paths from source to destination. All models except multi flow model are mixed integer programming optimization problem.
基金supported by National Natural Science Foundation of China (No. 51777062)National key research and development program (No. 2018YFB0904200) the Fundamental Research Funds for the Central UniversitiesHunan science and technology project (No. 2017XK2014)
文摘With the integration of information technologies, power system operations are increasingly threatened by cyber-attacks. It has even been revealed that an attacker can inject false data into real-time measurements stealthily without knowing the full configuration(e.g., network topology) of a power system. In this paper, we present a comprehensive review on false data injection attacks which utilize barrier conditions, blind identification techniques and data driven approaches to overcome limitations of incomplete network information. We also point out future research topics for facilitating the detection and prevention of such false data attacks.