A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which i...A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.展开更多
Macromolecular condensed state involves crystalline state and non-crystalline state of long-chain synthetic and naturally occurring molecules. The noncrystalline state may be a polymeric fluid, a rubbery elastic semi-...Macromolecular condensed state involves crystalline state and non-crystalline state of long-chain synthetic and naturally occurring molecules. The noncrystalline state may be a polymeric fluid, a rubbery elastic semi-solid or a rigid glass.展开更多
A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach ...A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states.The method,based on the Lyapunov stability theory and the pole placement technique,presents some useful features:(i) it enables synchronization to be achieved for both cases of n 〈 m and n 〉 m;(ii) it is rigorous,being based on theorems;(iii) it can be readily applied to any chaotic(hyperchaotic) maps defined to date.Finally,the capability of the approach is illustrated by synchronization examples between the two-dimensional H′enon map(as the drive system) and the three-dimensional hyperchaotic Wang map(as the response system),and the three-dimensional H′enon-like map(as the drive system) and the two-dimensional Lorenz discrete-time system(as the response system).展开更多
Circular double stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing
In this paper, we propose a non-autonomous convection-reaction diffusion system (CDI) with a nonlinear reaction source function. This model refers to the quantification and the distribution of antibiotic resistant b...In this paper, we propose a non-autonomous convection-reaction diffusion system (CDI) with a nonlinear reaction source function. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. The main contributions of this paper are: (i) the determination of the limit set of the system by applying the semigroups theory, it is shown that it is reduced to the solutions of the associated elliptic system (CDI)e, (ii) sufficient conditions for the existence of a positive solution of (CDI)e based on the Leray-Schauder's degree theory. Numerical simulations which support our theoretical analysis are also given.展开更多
文摘A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.
文摘Macromolecular condensed state involves crystalline state and non-crystalline state of long-chain synthetic and naturally occurring molecules. The noncrystalline state may be a polymeric fluid, a rubbery elastic semi-solid or a rigid glass.
文摘A new synchronization scheme for chaotic(hyperchaotic) maps with different dimensions is presented.Specifically,given a drive system map with dimension n and a response system with dimension m,the proposed approach enables each drive system state to be synchronized with a linear response combination of the response system states.The method,based on the Lyapunov stability theory and the pole placement technique,presents some useful features:(i) it enables synchronization to be achieved for both cases of n 〈 m and n 〉 m;(ii) it is rigorous,being based on theorems;(iii) it can be readily applied to any chaotic(hyperchaotic) maps defined to date.Finally,the capability of the approach is illustrated by synchronization examples between the two-dimensional H′enon map(as the drive system) and the three-dimensional hyperchaotic Wang map(as the response system),and the three-dimensional H′enon-like map(as the drive system) and the two-dimensional Lorenz discrete-time system(as the response system).
基金supported by the Young Investigator Award received by Yan in 2006the Foundation for the Visiting PhD Candidate of the Chinese Academy of Science received by Liu in 2006
文摘Circular double stranded DNA has different topological states which are defined by their linking numbers. Equilibrium distribution of linking numbers can be obtained by closing
文摘In this paper, we propose a non-autonomous convection-reaction diffusion system (CDI) with a nonlinear reaction source function. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. The main contributions of this paper are: (i) the determination of the limit set of the system by applying the semigroups theory, it is shown that it is reduced to the solutions of the associated elliptic system (CDI)e, (ii) sufficient conditions for the existence of a positive solution of (CDI)e based on the Leray-Schauder's degree theory. Numerical simulations which support our theoretical analysis are also given.