A detailed study of some simple forms which have a given special structure have been solved, in this paper, we research the extension of this kind of special structure problems.
Non-similarity solutions are obtained for one-dimensional isothermal and adiabatic flow behind strong cylindrical shock wave propagation in a rotational ax-isymmetric dusty gas, which has a variable azimuthal and axia...Non-similarity solutions are obtained for one-dimensional isothermal and adiabatic flow behind strong cylindrical shock wave propagation in a rotational ax-isymmetric dusty gas, which has a variable azimuthal and axial fluid velocity. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equi-librium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. The fluid velocities in the ambient medium are assumed to obey exponential laws. The shock wave moves with variable velocity. The effects of variation of the mass concentration of solid particles in the mixture, and the ratio of the density of solid particles to the initial density of the gas on the flow variables in the region behind the shock are investigated at given times. Also, a comparison between the solutions in the cases of isothermal and adia-batic flows is made.展开更多
In this paper, we research non linear programming problems which have a given special structure, some simple forms of this kind structure have been solved in some papers, here we focus on other complex ones.
文摘A detailed study of some simple forms which have a given special structure have been solved, in this paper, we research the extension of this kind of special structure problems.
文摘Non-similarity solutions are obtained for one-dimensional isothermal and adiabatic flow behind strong cylindrical shock wave propagation in a rotational ax-isymmetric dusty gas, which has a variable azimuthal and axial fluid velocity. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equi-librium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. The fluid velocities in the ambient medium are assumed to obey exponential laws. The shock wave moves with variable velocity. The effects of variation of the mass concentration of solid particles in the mixture, and the ratio of the density of solid particles to the initial density of the gas on the flow variables in the region behind the shock are investigated at given times. Also, a comparison between the solutions in the cases of isothermal and adia-batic flows is made.
文摘In this paper, we research non linear programming problems which have a given special structure, some simple forms of this kind structure have been solved in some papers, here we focus on other complex ones.