By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, wh...By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers. And we discuss some of their applications to ehiral perturbation theory and general relativity.展开更多
The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of sur...The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.展开更多
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod...In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.展开更多
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. No...It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.展开更多
A novel La Shalle's invariant set theory (LSIST) based adaptive asymptotic synchronization (LSISAAS) method is proposed to asymptotically synchronize Duffing system with unknown parameters which also are consider...A novel La Shalle's invariant set theory (LSIST) based adaptive asymptotic synchronization (LSISAAS) method is proposed to asymptotically synchronize Duffing system with unknown parameters which also are considered as system states. The LSISASS strategy depends on the only information, i.e. one state of the master system. According to the LSIST, the LSISASS method can asymptotically synchronize fully the states of the master system and the unknown system parameters as well. Simulation results also validate that the LSISAAS approach can obtain asymptotic synchronization.展开更多
Owing to the unique structural,electronic,and physico-chemical properties,molybdenum clusters are expected to play an important role in future nanotechnologies.However,their ground states are still under debate.In thi...Owing to the unique structural,electronic,and physico-chemical properties,molybdenum clusters are expected to play an important role in future nanotechnologies.However,their ground states are still under debate.In this study,the crystal structure analysis by particle swarm optimization(CALYPSO)approach is used for the global minimum search,which is followed by first-principles calculations,to detect an obvious dimerization tendency in Mo_(n)(n=2-18)clusters when the 4s and 4p semicore states are not regarded as the valence states.Further,the clusters with even number of atoms are usually magic clusters with high stability.However,after including the4 s and 4 p electrons as valence electrons,the dimerization tendency exhibits a drastic reduction because the average hybridization indices H_(sp),H_(sd),and H_(pd) are reduced significantly.Overall,this work reports new ground states of Mo_(n)(n=11,14,15)clusters and proves that semicore states are essential for Mo_(n) clusters.展开更多
This paper briefly discusses existing problems with the theory of general relativity despite remarkable accuracy in most of its applications. The primary focus is on existing problems in the field of cosmology, partic...This paper briefly discusses existing problems with the theory of general relativity despite remarkable accuracy in most of its applications. The primary focus is on existing problems in the field of cosmology, particularly those pertaining to expectations of global cosmic space-time curvature in the absence of observational proof. The discussion centers on Krogdahl’s recent Lorentz-invariant flat space-time cosmology and its superiority to general relativity with respect to accounting for global cosmic space-time flatness and dark energy observations. The “cosmological constant problem” is briefly addressed as a problem for general relativity with respect to particle physics and quantum field theory. Finally, two very specific validation predictions in favor of Krogdahl’s flat space-time cosmology are made with respect to ongoing studies, including the dark energy survey (DES).展开更多
The paper is a kind of a review which considers an investigation of the scale of time suggested by an application of the Schrödinger perturbation method, especially when the perturbation of a non-degenerate q...The paper is a kind of a review which considers an investigation of the scale of time suggested by an application of the Schrödinger perturbation method, especially when the perturbation of a non-degenerate quantum state is examined. In fact the method was applied in numerous cases—also by Schrödinger himself—without any use of the notion of time. Simultaneously, because of the development of computers, their use in solving the perturbation problems gradually decreased. However, the point of importance in the paper became the time. We demonstrate that collisions of a quantum system with the perturbation potential can be arranged along a circular scale of time whose properties provide us precisely with the energy terms obtained by the Schrödinger perturbation theory. This validity of results is checked till the perturbation order N = 7.展开更多
Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 k...Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.展开更多
Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D p...Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).展开更多
基金The project supported in part by National Natural Science Foundation of China
文摘By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers. And we discuss some of their applications to ehiral perturbation theory and general relativity.
基金Supported by the National Natural Science Foundation of China (20776040 20876041 20736002) the National Basic Research Program of China (2009CB219902)+1 种基金 the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant IRT0721) the 111 Project (Grant B08021) of China
文摘The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.
文摘In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.
基金supported by the National Natural Science Foundation of China(Grant No.61205108)the High Performance Computing(HPC)Foundation of National University of Defense Technology,China
文摘It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.
文摘A novel La Shalle's invariant set theory (LSIST) based adaptive asymptotic synchronization (LSISAAS) method is proposed to asymptotically synchronize Duffing system with unknown parameters which also are considered as system states. The LSISASS strategy depends on the only information, i.e. one state of the master system. According to the LSIST, the LSISASS method can asymptotically synchronize fully the states of the master system and the unknown system parameters as well. Simulation results also validate that the LSISAAS approach can obtain asymptotic synchronization.
基金supported by the National Natural Science Foundation of China (No.11404098 and No.11604082)the Student Research Training Program of Henan University of Science and Technology(WLSRTP201911)
文摘Owing to the unique structural,electronic,and physico-chemical properties,molybdenum clusters are expected to play an important role in future nanotechnologies.However,their ground states are still under debate.In this study,the crystal structure analysis by particle swarm optimization(CALYPSO)approach is used for the global minimum search,which is followed by first-principles calculations,to detect an obvious dimerization tendency in Mo_(n)(n=2-18)clusters when the 4s and 4p semicore states are not regarded as the valence states.Further,the clusters with even number of atoms are usually magic clusters with high stability.However,after including the4 s and 4 p electrons as valence electrons,the dimerization tendency exhibits a drastic reduction because the average hybridization indices H_(sp),H_(sd),and H_(pd) are reduced significantly.Overall,this work reports new ground states of Mo_(n)(n=11,14,15)clusters and proves that semicore states are essential for Mo_(n) clusters.
文摘This paper briefly discusses existing problems with the theory of general relativity despite remarkable accuracy in most of its applications. The primary focus is on existing problems in the field of cosmology, particularly those pertaining to expectations of global cosmic space-time curvature in the absence of observational proof. The discussion centers on Krogdahl’s recent Lorentz-invariant flat space-time cosmology and its superiority to general relativity with respect to accounting for global cosmic space-time flatness and dark energy observations. The “cosmological constant problem” is briefly addressed as a problem for general relativity with respect to particle physics and quantum field theory. Finally, two very specific validation predictions in favor of Krogdahl’s flat space-time cosmology are made with respect to ongoing studies, including the dark energy survey (DES).
文摘The paper is a kind of a review which considers an investigation of the scale of time suggested by an application of the Schrödinger perturbation method, especially when the perturbation of a non-degenerate quantum state is examined. In fact the method was applied in numerous cases—also by Schrödinger himself—without any use of the notion of time. Simultaneously, because of the development of computers, their use in solving the perturbation problems gradually decreased. However, the point of importance in the paper became the time. We demonstrate that collisions of a quantum system with the perturbation potential can be arranged along a circular scale of time whose properties provide us precisely with the energy terms obtained by the Schrödinger perturbation theory. This validity of results is checked till the perturbation order N = 7.
文摘Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.
文摘Beginning with a 5D homogeneous universe [1], we have provided a plausible explanation of the self-rotation phenomenon of stellar objects previously with illustration of large number of star samples [2], via a 5D-4D projection. The origin of such rotation is the balance of the angular momenta of stars and that of positive and negative charged e-trino pairs, within a 3D ⊗1D?void of the stellar object, the existence of which is based on conservation/parity laws in physics if one starts with homogeneous 5D universe. While the in-phase e-trino pairs are proposed to be responsible for the generation of angular momentum, the anti-phase but oppositely charge pairs necessarily produce currents. In the 5D to 4D projection, one space variable in the 5D manifold was compacted to zero in most other 5D theories (including theories of Kaluza-Klein and Einstein [3] [4]). We have demonstrated, using the Fermat’s Last Theorem [5], that for validity of gauge invariance at the 4D-5D boundary, the 4th space variable in the 5D manifold is mapped into two current rings at both magnetic poles as required by Perelman entropy mapping;these loops are the origin of the dipolar magnetic field. One conclusion we draw is that there is no gravitational singularity, and hence no black holes in the universe, a result strongly supported by the recent discovery of many stars with masses well greater than 100 solar mass [6] [7] [8], without trace of phenomena observed (such as strong gamma and X ray emissions), which are supposed to be associated with black holes. We analyze the properties of such loop currents on the 4D-5D boundary, where Maxwell equations are valid. We derive explicit expressions for the dipolar fields over the whole temperature range. We then compare our prediction with measured surface magnetic fields of many stars. Since there is coupling in distribution between the in-phase and anti-phase pairs of e-trinos, the generated mag-netic field is directly related to the angular momentum, leading to the result that the magnetic field can be expressible in terms of only the mechanical variables (mass M, radius R, rotation period P)of a star, as if Maxwell equations are “hidden”. An explanation for the occurrence of this “un-expected result” is provided in Section (7.6). Therefore we provide satisfactory answers to a number of “mysteries” of magnetism in astrophysics such as the “Magnetic Bode’s Relation/Law” [9] and the experimental finding that B-P graph in the log-log plot is linear. Moreover, we have developed a new method for studying the relations among the data (M, R, P) during stellar evolution. Ten groups of stellar objects, effectively over 2000 samples are used in various parts of the analysis. We also explain the emergence of huge magnetic field in very old stars like White Dwarfs in terms of formation of 2D Semion state on stellar surface and release of magnetic flux as magnetic storms upon changing the 2D state back to 3D structure. Moreover, we provide an explanation, on the ground of the 5D theory, for the detection of extremely weak fields in Venus and Mars and the asymmetric distribution of magnetic field on the Martian surface. We predict the equatorial fields B of the newly discovered Trappist-1 star and the 6 nearest planets. The log B?−?log P graph for the 6 planets is linear and they satisfy the Magnetic Bode’s relation. Based on the above analysis, we have discovered several new laws of stellar magnetism, which are summarized in Section (7.6).