This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t...This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.展开更多
The nonlinear dynamic and static deflection of a micro/nano gyroscope under DC voltages and base rotation are investigated. The gyroscope undertakes two cou- pled bending motions along the drive and sense directions a...The nonlinear dynamic and static deflection of a micro/nano gyroscope under DC voltages and base rotation are investigated. The gyroscope undertakes two cou- pled bending motions along the drive and sense directions and subjected to electrostatic actuations and intermolecular forces. The nonlinear governing equations of motion for the system with the effect of electrostatic force, intermolecular tractions and base rotation are derived using extended Hamilton principle. Under constant voltage, the gyroscope finds the preformed shape. First, the deflection of the rnicro/nano gyroscope under electrostatic forces is obtained by static and dynamic analyses. Furthermore, the static and dynamic in- stability of the system are investigated. Afterward the oscillatory behavior of the pre-deformed micro/nano gyroscope around equilibrium is studied. The effects of intermolecular and nonlinear parameters on the static and dynamic de- flection, natural frequencies and instability of the micro/nano gyroscope are studied. The presented model can be used to exactly determine static and the dynamic behavior of vibratory micro/nano gyroscopes.展开更多
With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be...With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.展开更多
This study investigated the characteristics and formation of the online social trust network of Epinions.com, a general consumer review site. An analysis of the static structure of this social trust network revealed a...This study investigated the characteristics and formation of the online social trust network of Epinions.com, a general consumer review site. An analysis of the static structure of this social trust network revealed a high clustering coefficient, short average path length, and power-law degree distribution;it is therefore a small-world and scale-free trust network. The dynamic evolutionary characteristics of the online social network (OSN) were also examined. The results showed that the scale of the network followed a sigmoidal curve;the average degree of the network was nonconstant and changed into a bell-shaped distribution;the density of the network decreased and subsequently stabilized;and user trust diffusion in the network conformed to the Bass model. Finally, the formation of trust within the network was researched at the overall network (macro) and individual user (micro) levels. Compared with their accumulated contribution and reputation, user activeness had a larger effect on trust formation in OSNs, indicating a “diminishing returns” phenomenon. This phenomenon contrasts with the Matthew effect (i.e. , the more reputation a person has, the more likely he or she is to be trusted) in real-world social networks.展开更多
Excavation damage under high in situ stress depends largely upon the potential block size associated with any violent ejection.The size and shape of the dynamic instability are largely controlled by the location,orien...Excavation damage under high in situ stress depends largely upon the potential block size associated with any violent ejection.The size and shape of the dynamic instability are largely controlled by the location,orientation and extent of the pre-existing geological discontinuities.A new methodology is presented in which the rock mass demand can be expressed in terms of the mass in tonnes of unstable rock that is ejected per unit area of the excavation surface where failure occurs.A probabilistic approach has been implemented to estimate the potential rock mass instabilities and their associated static and dynamic demands.The new methodology considers that the strain energy released by the rock mass during violent stress-driven failure is largely converted into kinetic energy of ejection for blocks.The estimated dynamic demand has been favourably compared with observations of rock mass damage in a number of underground excavations.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
Aim: The purpose of this study was to compare static and dynamic warm-up regimes on lower limb muscle power and thereby the perform-ance of the individual. Methodology: Twenty eight (28) subjects were assigned into gr...Aim: The purpose of this study was to compare static and dynamic warm-up regimes on lower limb muscle power and thereby the perform-ance of the individual. Methodology: Twenty eight (28) subjects were assigned into groups consisting of 2 members. From each group, 1 subject performed the static stretching and the other subject performed dynamic stretching as warm-up. This was followed by non-counter movement jumps on a force platform and the vertical jump heights were recorded. Data were analysed using one-way ANOVA and paired t-test at 0.05 alpha. Result: The results showed that dynamic stretching as warm-up causes significant increase (p=0.01) in the vertical jump height as compared to static stretching (p=0.03). Discussion: The increase in vertical jump height could be related to the increase in force pro-duction which plays an important role during the vertical jump test. On the other hand the decrease in vertical jump height following static stretching could be attributed to a decrease in the force production in the muscles. Conclusion: Dynamic warm-up increases the vertical lump height, whereas static stretching decreases the jump height of the athlete.展开更多
The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture t...The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.展开更多
The presence of geological structures such as faults, joints, and dykes has been observed near excavation boundaries in many rockburst case histories. In this paper, the role of discontinuities around tunnels in rockb...The presence of geological structures such as faults, joints, and dykes has been observed near excavation boundaries in many rockburst case histories. In this paper, the role of discontinuities around tunnels in rockburst occurrence was studied. For this purpose, the Abaqus explicit code was used to simulate dynamic rock failure in deep tunnels. Material heterogeneity was considered using Python scripting in Abaqus. Rockbursts near fault regions in deep tunnels under static and dynamic loads were studied.Several tunnel models with and without faults were built and static and dynamic loads were used to simulate rock failure. The velocity and the released kinetic energy of failed rocks, the failure zone around the tunnel, and the deformed mesh were studied to identify stable and unstable rock failures. Compared with models without discontinuities, the results showed that the velocity and the released kinetic energy of failed rocks were higher, the failure zone around the tunnel was larger, and the mesh was more deformed in the models with discontinuities, indicating that rock failure in the models with discontinuities was more violent. The modeling results confirm that the presence of geological structures in the vicinity of deep excavations could be one of the major influence factors for the occurrence of rockburst. It can explain localized rockburst occurrence in civil tunnels and mining drifts. The presented methodology in this paper for rockburst analysis can be useful for rockburst anticipation and control during mining and tunneling in highly stressed ground.展开更多
A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equa...A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots.展开更多
For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is dif...For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.展开更多
A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple un...A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple unbalance can be separated effectively by using the newmachine with the new swing frame. By building the dynamics model, the advantages of the newstructure are discussed in detail. The modal and harmonic response are analyzed by using theANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, thenatural frequencies and vibration modes are found out. There are many spring boards in the new swingframe. Their stiffness is different and assort with each other. Furthermore, there are threesensors on the measurement points. Therefore, the new dynamic balancing machine can measure thestatic unbalance and couple unbalance directly, and the influence between them is faint. The newstructure has the function of belt-strain compensation to improve the measurement precision. Thepractical result indicates that the new vertical dynamic balancing machine is suitable for inertialmeasurement of flying objects, and can overcome the shortcomings of traditional double-planevertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibrationstructure can be widely used in the future applications. The modeling and analysis of the newvibration structure provide theoretic instruction and practical experience for designing new type ofvertical dynamic balancing machines. Based on the design principles such as stiffness-matching,frequency-adjacence and strain-compensation and so on, various new type of vibration structures canbe designed.展开更多
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation ba...High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.展开更多
When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the fr...When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.展开更多
With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is d...With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is designed mimicking human fingertip in both structures and functionalities.Two pairs of strain gages and(Polyvinylidene Fluoride)PVDF films are perpendicularly arranged to simulate the Fast-Adapting(FA)and Slowly Adapting(SA)type mechanoreceptors in human hands,while silicones,Polymethyl Methacrylate(PMMA),and electronic wires are applied to mimic the skin,bone and nerve fibers.Both static and dynamic forces can be perceived sensitively.A preprocessing electric circuit is further designed to transform the resistor changes into voltages,and then filter and amplify the four-channel signals.In addition to strong robustness due to the embedded structure,the developed fingertip is found sensitive to deformations via a force test experiment.Finally,two robotic experiments explore its recognition ability of contact status and object surface.Excellent performance is found with high accuracy of 99.72%achieved in discriminating six surfaces that are ubiquitous in daily life,which demonstrates the effectiveness of our designed tactile sensor.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to b...For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to be failed in two-time breaking.Based on this important finding,model tests study of the ice force on a compliant multi-cone structure were performed from 2006 to 2007.In these tests,the ice sheet broke before each single cone non-simultaneously.The exciting energy of the total ice force was found to be in a wide range of frequencies,and the structure can be easily excited with nonlinear resonance.展开更多
With the opening of ancient Tibetan structures to visitors worldwide, human load has become the principal live load on these structures. This project studies the properties of the floor structure of an ancient Tibetan...With the opening of ancient Tibetan structures to visitors worldwide, human load has become the principal live load on these structures. This project studies the properties of the floor structure of an ancient Tibetan building and its behavior under human-induced load effects. Tests were conducted with static and dynamic crowd load, including stepping and jogging by people at a fixed position. The tests show that the floor structure does not behave as a continuous slab. It takes the load from local areas with minimal load transference properties. The acceleration response shows significant peaks when the footstep frequency is close to the natural frequency of the s~'ucture, but the human jogging excitation frequency does not have any obvious effect on the structural response. The elastic modulus of the Agatu material is estimated to be close to zero from the measured natural frequency of the slab. The Agatu material is concluded to be a discrete compacted material with insignificant contribution to the structural rigidity of the floor slab.展开更多
Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly...Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.展开更多
This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures...This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.展开更多
文摘This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.
文摘The nonlinear dynamic and static deflection of a micro/nano gyroscope under DC voltages and base rotation are investigated. The gyroscope undertakes two cou- pled bending motions along the drive and sense directions and subjected to electrostatic actuations and intermolecular forces. The nonlinear governing equations of motion for the system with the effect of electrostatic force, intermolecular tractions and base rotation are derived using extended Hamilton principle. Under constant voltage, the gyroscope finds the preformed shape. First, the deflection of the rnicro/nano gyroscope under electrostatic forces is obtained by static and dynamic analyses. Furthermore, the static and dynamic in- stability of the system are investigated. Afterward the oscillatory behavior of the pre-deformed micro/nano gyroscope around equilibrium is studied. The effects of intermolecular and nonlinear parameters on the static and dynamic de- flection, natural frequencies and instability of the micro/nano gyroscope are studied. The presented model can be used to exactly determine static and the dynamic behavior of vibratory micro/nano gyroscopes.
文摘With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.
文摘This study investigated the characteristics and formation of the online social trust network of Epinions.com, a general consumer review site. An analysis of the static structure of this social trust network revealed a high clustering coefficient, short average path length, and power-law degree distribution;it is therefore a small-world and scale-free trust network. The dynamic evolutionary characteristics of the online social network (OSN) were also examined. The results showed that the scale of the network followed a sigmoidal curve;the average degree of the network was nonconstant and changed into a bell-shaped distribution;the density of the network decreased and subsequently stabilized;and user trust diffusion in the network conformed to the Bass model. Finally, the formation of trust within the network was researched at the overall network (macro) and individual user (micro) levels. Compared with their accumulated contribution and reputation, user activeness had a larger effect on trust formation in OSNs, indicating a “diminishing returns” phenomenon. This phenomenon contrasts with the Matthew effect (i.e. , the more reputation a person has, the more likely he or she is to be trusted) in real-world social networks.
基金financial assistance and support provided over many years by various organisations including CODELCO Chile, CRC Mining, Mining3, MMG, DSI and Geobrugg
文摘Excavation damage under high in situ stress depends largely upon the potential block size associated with any violent ejection.The size and shape of the dynamic instability are largely controlled by the location,orientation and extent of the pre-existing geological discontinuities.A new methodology is presented in which the rock mass demand can be expressed in terms of the mass in tonnes of unstable rock that is ejected per unit area of the excavation surface where failure occurs.A probabilistic approach has been implemented to estimate the potential rock mass instabilities and their associated static and dynamic demands.The new methodology considers that the strain energy released by the rock mass during violent stress-driven failure is largely converted into kinetic energy of ejection for blocks.The estimated dynamic demand has been favourably compared with observations of rock mass damage in a number of underground excavations.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘Aim: The purpose of this study was to compare static and dynamic warm-up regimes on lower limb muscle power and thereby the perform-ance of the individual. Methodology: Twenty eight (28) subjects were assigned into groups consisting of 2 members. From each group, 1 subject performed the static stretching and the other subject performed dynamic stretching as warm-up. This was followed by non-counter movement jumps on a force platform and the vertical jump heights were recorded. Data were analysed using one-way ANOVA and paired t-test at 0.05 alpha. Result: The results showed that dynamic stretching as warm-up causes significant increase (p=0.01) in the vertical jump height as compared to static stretching (p=0.03). Discussion: The increase in vertical jump height could be related to the increase in force pro-duction which plays an important role during the vertical jump test. On the other hand the decrease in vertical jump height following static stretching could be attributed to a decrease in the force production in the muscles. Conclusion: Dynamic warm-up increases the vertical lump height, whereas static stretching decreases the jump height of the athlete.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by Creative Research Group of National Natural Science Foundation of ChinaProject (CX2012B043) supported by Hunan Provincial Innovation Foundation for Postgraduate
文摘The influences of deformation conditions on grain structure and properties of 7085 aluminum alloy were investigated by optical microscopy and transmission electron microscopy in combination with tensile and fracture toughness tests. The results show that the volume fraction of dynamic recrystallization increased with the decrease of Zener-Hollomon (Z) parameter, and the volume fraction of static recrystallization increased with the increasing of Z parameter. The strength and fracture toughness of the alloy after solution and aging treatment first increased and then decreased with the increase of Z parameter. The microstructure map was established on the basis of microstructure evolution during deformation and solution heat treatment. The optimization deformation conditions were acquired under Z parameters of 1.2×10^10-9.1×10^12.
基金Financial supports from the Natural Sciences and Engineering Research Council(NSERC)of Canada(CRDPJ 418932-11)Vale,LKAB,CEMI,MIRARCO,and the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z015001)for this work are gratefully acknowledged
文摘The presence of geological structures such as faults, joints, and dykes has been observed near excavation boundaries in many rockburst case histories. In this paper, the role of discontinuities around tunnels in rockburst occurrence was studied. For this purpose, the Abaqus explicit code was used to simulate dynamic rock failure in deep tunnels. Material heterogeneity was considered using Python scripting in Abaqus. Rockbursts near fault regions in deep tunnels under static and dynamic loads were studied.Several tunnel models with and without faults were built and static and dynamic loads were used to simulate rock failure. The velocity and the released kinetic energy of failed rocks, the failure zone around the tunnel, and the deformed mesh were studied to identify stable and unstable rock failures. Compared with models without discontinuities, the results showed that the velocity and the released kinetic energy of failed rocks were higher, the failure zone around the tunnel was larger, and the mesh was more deformed in the models with discontinuities, indicating that rock failure in the models with discontinuities was more violent. The modeling results confirm that the presence of geological structures in the vicinity of deep excavations could be one of the major influence factors for the occurrence of rockburst. It can explain localized rockburst occurrence in civil tunnels and mining drifts. The presented methodology in this paper for rockburst analysis can be useful for rockburst anticipation and control during mining and tunneling in highly stressed ground.
基金Sponsored by the National Natural Science Foundation of China (50675109)
文摘A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots.
文摘For statically indeterminate structure, the internal force will be changed with the translation of the supports, because the internal force is related to the absolute value of the stiffness EI. When the tension is different with the compression modulus, EI is the function of internal force and is not constant any more that is different from classic mechanics. In the other words, it is a nonlinear problem to calculate the internal force. The expression for neutral axis of the statically indeterminate structure was derived in the paper. The iterative program for nonlinear internal force was compiled. One case study was presented to illustrate the difference between the results using the different modulus theory and the single modulus theory as in classical mechanics. Finally, some reasonable suggestions were made for the different modulus structures.
文摘A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple unbalance can be separated effectively by using the newmachine with the new swing frame. By building the dynamics model, the advantages of the newstructure are discussed in detail. The modal and harmonic response are analyzed by using theANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, thenatural frequencies and vibration modes are found out. There are many spring boards in the new swingframe. Their stiffness is different and assort with each other. Furthermore, there are threesensors on the measurement points. Therefore, the new dynamic balancing machine can measure thestatic unbalance and couple unbalance directly, and the influence between them is faint. The newstructure has the function of belt-strain compensation to improve the measurement precision. Thepractical result indicates that the new vertical dynamic balancing machine is suitable for inertialmeasurement of flying objects, and can overcome the shortcomings of traditional double-planevertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibrationstructure can be widely used in the future applications. The modeling and analysis of the newvibration structure provide theoretic instruction and practical experience for designing new type ofvertical dynamic balancing machines. Based on the design principles such as stiffness-matching,frequency-adjacence and strain-compensation and so on, various new type of vibration structures canbe designed.
基金supported by National Science and Technology Support Program of China (Grant No. 2012BAF15G00)
文摘High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
基金Supported by Nation Youth Science Foundation of China(Grant No.51505315)Collaboration Innovation Center of Taiyuan Heavy Machinery Equipment and Shanxi Provincial Natural Science Foundation of China(Grant No.201701D221135)Innovative Project of Graduate Education in Shanxi Province of China(Grant No.2016BY132)
文摘When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.
基金funded by National Natural Science Foundation of China under Grant No.52205009Natural Science Foundation of Jiangsu Province under Grant No.BK20210233Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems.
文摘With the aid of different types of mechanoreceptors,human is capable of perceiving stimuli from surrounding environments and manipulating various objects dexterously.In this paper,a bio-inspired tactile fingertip is designed mimicking human fingertip in both structures and functionalities.Two pairs of strain gages and(Polyvinylidene Fluoride)PVDF films are perpendicularly arranged to simulate the Fast-Adapting(FA)and Slowly Adapting(SA)type mechanoreceptors in human hands,while silicones,Polymethyl Methacrylate(PMMA),and electronic wires are applied to mimic the skin,bone and nerve fibers.Both static and dynamic forces can be perceived sensitively.A preprocessing electric circuit is further designed to transform the resistor changes into voltages,and then filter and amplify the four-channel signals.In addition to strong robustness due to the embedded structure,the developed fingertip is found sensitive to deformations via a force test experiment.Finally,two robotic experiments explore its recognition ability of contact status and object surface.Excellent performance is found with high accuracy of 99.72%achieved in discriminating six surfaces that are ubiquitous in daily life,which demonstrates the effectiveness of our designed tactile sensor.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金supported bythe National High Technology Research and Development Program of China(863Program,Grant No.2003AA602150-3)the National Natural Science Foundation of China(Grant No.50609015)
文摘For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to be failed in two-time breaking.Based on this important finding,model tests study of the ice force on a compliant multi-cone structure were performed from 2006 to 2007.In these tests,the ice sheet broke before each single cone non-simultaneously.The exciting energy of the total ice force was found to be in a wide range of frequencies,and the structure can be easily excited with nonlinear resonance.
基金National Natural Science Foundation of China Under Grant No.51178028 and No.50938008Program for New Century Excellent Talents in University(NCET-11-0571)+1 种基金the Fundamental Research Funds for the Central Universities(2012JBM007)the 111 Project(B13002)
文摘With the opening of ancient Tibetan structures to visitors worldwide, human load has become the principal live load on these structures. This project studies the properties of the floor structure of an ancient Tibetan building and its behavior under human-induced load effects. Tests were conducted with static and dynamic crowd load, including stepping and jogging by people at a fixed position. The tests show that the floor structure does not behave as a continuous slab. It takes the load from local areas with minimal load transference properties. The acceleration response shows significant peaks when the footstep frequency is close to the natural frequency of the s~'ucture, but the human jogging excitation frequency does not have any obvious effect on the structural response. The elastic modulus of the Agatu material is estimated to be close to zero from the measured natural frequency of the slab. The Agatu material is concluded to be a discrete compacted material with insignificant contribution to the structural rigidity of the floor slab.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 41306087), Public Science and Technology Research Funds Projects of Ocean (Grant No. 201505019)
文摘Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice acting on conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, quantitative criteria of the ratio of a cone width at waterline(D) to sea ice thickness(h) is proposed. If the ratio is less than 30(narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50(wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.
基金China Earthquake Administration Association Fund Under Grant No. 106060 and Institute of Engineering Mechanics Director Fund
文摘This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.