Static balancing for a manipulator's weight is necessary in terms of energy saving and performance improvement. This paper proposes a method to design balancing devices for articulated robots in industry, based on ro...Static balancing for a manipulator's weight is necessary in terms of energy saving and performance improvement. This paper proposes a method to design balancing devices for articulated robots in industry, based on robotic dynamics. Full design details for the balancing system using springs are presented from two aspects: One is the optimization for the position of the balancing system; the other is the design of the spring parameters. As examples, two feasible balancing devices are proposed, based on different robotic structures: The first solution consists of linkages and springs; the other consists of pulleys, cross mechanisms and (hydro-) pneumatic springs. Then the two solutions are compared. Pneumatic, hydro-pneumatic and mechanical springs are discussed and their parameters are decided according to the requirements of torque compensation. Numerical results show that with the proper design using the methodology presented in this paper, an articulated robot can be statically balanced perfectly in all configurations. This paper therefore provides a design method of the balancing system for other similar structures.展开更多
Large-scale parallelization of molecular dynamics simulations is facing challenges which seriously affect the simula- tion efficiency, among which the load imbalance problem is the most critical. In this paper, we pro...Large-scale parallelization of molecular dynamics simulations is facing challenges which seriously affect the simula- tion efficiency, among which the load imbalance problem is the most critical. In this paper, we propose, a new molecular dynamics static load balancing method (MDSLB). By analyzing the characteristics of the short-range force of molecular dynamics programs running in parallel, we divide the short-range force into three kinds of force models, and then pack- age the computations of each force model into many tiny computational units called "cell loads", which provide the basic data structures for our load balancing method. In MDSLB, the spatial region is separated into sub-regions called "local domains", and the cell loads of each local domain are allocated to every processor in turn. Compared with the dynamic load balancing method, MDSLB can guarantee load balance by executing the algorithm only once at program startup without migrating the loads dynamically. We implement MDSLB in OpenFOAM software and test it on TianHe-lA supercomputer with 16 to 512 processors. Experimental results show that MDSLB can save 34%-64% time for the load imbalanced cases.展开更多
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation ba...High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.展开更多
Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is su...Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is suitable for parallel computing. In this paper, a static load balance parallel method is presented by combining Message Passing Interface (MPI) with Adaptively Modified CBFM (AMCBFM). In this method, the object geometry is partitioned into distinct blocks, and the serial number of blocks is sent to related nodes according to a certain rule. Every node only needs to calculate the information on local blocks. The obtained results confirm the accuracy and efficiency of the proposed method in speeding up solving large electrical scale problems.展开更多
Based on the motion equations of an unbalanced spherical rotor withcontactless suspension, three methods of MUM (mass unbalance measurement) are put forward to measurethe total mass unbalance, radical mass unbalance a...Based on the motion equations of an unbalanced spherical rotor withcontactless suspension, three methods of MUM (mass unbalance measurement) are put forward to measurethe total mass unbalance, radical mass unbalance and radical mass unbalance of the rotor. Totalmass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total massunbalance of the rotor respectively. Analysis of the motion equations by using the averaging methodyields that the rotor will do a special side oscillation when an auxiliary system makes the rotorspin about its pole axis which is orientating toward the local vertical. The radical mass unbalancecan be obtained by building a proper displacement sensor to sense the amplitude of the sideoscillation. Necessary analysis of the motion equations also shows that when the rotor spins at asmall angular velocity and the rotary axis is perpendicular to the vertical, the pole axis of therotor will precess slowly about the vertical by virtue of the axial mass unbalance. The axial massunbalance can be estimated from the time history of the spin vector of the rotor. Finally,measurement precision of the three methods is compared and how the external torque affects themeasurement precision for the three methods are examined.展开更多
Proper balance is essential for athletes during competition and training as sport places different balance requirements on the human body. The purpose of the study was to analyze balance performance among female athle...Proper balance is essential for athletes during competition and training as sport places different balance requirements on the human body. The purpose of the study was to analyze balance performance among female athletes using COP (center of pressure) sway parameters. Twenty one NCAA (National Collegiate Athletic Association) division I female athletes (soccer, volleyball and dance) completed the study. Static balance was assessed using UST (unilateral stance test) and dynamic balance was assessed using MCT (motor control test) on the NeuroCom Equitest. Sway velocities, root mean square sway and reaction time latencies were used to quantify balance. A one-way between subjects ANOVA (analysis of variance) was performed to analyze these balance parameters. Significant (p 〈 0.05) differences between groups were found and post hoc comparisons revealed that the volleyball and dance groups had better static balance compared to soccer players, while both soccer and volleyball groups had better dynamic balance compared to the dance group. The results from the study indicate two points: first, differences in balance performance among female athletes in different sporting discipline; second, there is no relationship between static and dynamic balance. This indicates that it may be more beneficial to assess and train for static and dynamic balance individually.展开更多
In this paper,by analyzing the design and control scheme of the mooring system based on theoretical mechanics,force analysis is conducted on the buoy,steel pipe,steel drum,and anchor chain,and a reasonable mathematica...In this paper,by analyzing the design and control scheme of the mooring system based on theoretical mechanics,force analysis is conducted on the buoy,steel pipe,steel drum,and anchor chain,and a reasonable mathematical model is constructed to solve the problems of the inclination angle of the steel drum and each section of the steel pipe,the shape of the anchor chain,the draft of the buoy,and the swimming area under different wind speeds,thus providing a reliable basis for the design of the system.展开更多
The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. Fo...The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors' low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine's measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine's performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite's rotating payloads in terms of accuracy and stability.展开更多
A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanc...A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanced by discharging and pre-charging the key nodes of the output circuit and adding an additional shortcircuit current path. Thus, the power consumption is constant in every read cycle. As a result, the DPA-resistant ability of the SRAM is improved. In 65 nm CMOS technology, the power balance SRAM is fully custom designed with a layout area of 5863.6 μm^2.The post-simulation results show that the normalized energy deviation(NED) and normalized standard deviation(NSD) are 0.099% and 0.04%, respectively. Compared to existing power balance circuits, the power balance ability of the proposed SRAM has improved 53%.展开更多
Structural design for a drum of a CTP device and modal analysis by means of ANSYS workbench have been done to get the first four natural frequencies and vibration models.Natural frequency and maximum deformation of dr...Structural design for a drum of a CTP device and modal analysis by means of ANSYS workbench have been done to get the first four natural frequencies and vibration models.Natural frequency and maximum deformation of drum as the optimization goal,three kinds of proposals are put forward based on the weak area of the drum.By means of adjusting static balance and adding thickness,an optimal project 3 is determined the best in the three kinds of proposals.The first natural frequency of the drum optimized is increased by 33.1% than that before optimization,the maximum displacement is reduced by 23.2%.Testing the result of simulation meets image high quality requirements,dynamics analysis and structural optimization are realized.展开更多
文摘Static balancing for a manipulator's weight is necessary in terms of energy saving and performance improvement. This paper proposes a method to design balancing devices for articulated robots in industry, based on robotic dynamics. Full design details for the balancing system using springs are presented from two aspects: One is the optimization for the position of the balancing system; the other is the design of the spring parameters. As examples, two feasible balancing devices are proposed, based on different robotic structures: The first solution consists of linkages and springs; the other consists of pulleys, cross mechanisms and (hydro-) pneumatic springs. Then the two solutions are compared. Pneumatic, hydro-pneumatic and mechanical springs are discussed and their parameters are decided according to the requirements of torque compensation. Numerical results show that with the proper design using the methodology presented in this paper, an articulated robot can be statically balanced perfectly in all configurations. This paper therefore provides a design method of the balancing system for other similar structures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61303071 and 61120106005)the Natural Science Fund from the Guangzhou Science and Information Technology Bureau (Grant No.134200026)
文摘Large-scale parallelization of molecular dynamics simulations is facing challenges which seriously affect the simula- tion efficiency, among which the load imbalance problem is the most critical. In this paper, we propose, a new molecular dynamics static load balancing method (MDSLB). By analyzing the characteristics of the short-range force of molecular dynamics programs running in parallel, we divide the short-range force into three kinds of force models, and then pack- age the computations of each force model into many tiny computational units called "cell loads", which provide the basic data structures for our load balancing method. In MDSLB, the spatial region is separated into sub-regions called "local domains", and the cell loads of each local domain are allocated to every processor in turn. Compared with the dynamic load balancing method, MDSLB can guarantee load balance by executing the algorithm only once at program startup without migrating the loads dynamically. We implement MDSLB in OpenFOAM software and test it on TianHe-lA supercomputer with 16 to 512 processors. Experimental results show that MDSLB can save 34%-64% time for the load imbalanced cases.
基金supported by National Science and Technology Support Program of China (Grant No. 2012BAF15G00)
文摘High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
文摘Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is suitable for parallel computing. In this paper, a static load balance parallel method is presented by combining Message Passing Interface (MPI) with Adaptively Modified CBFM (AMCBFM). In this method, the object geometry is partitioned into distinct blocks, and the serial number of blocks is sent to related nodes according to a certain rule. Every node only needs to calculate the information on local blocks. The obtained results confirm the accuracy and efficiency of the proposed method in speeding up solving large electrical scale problems.
基金This project is supported by National Defense Foundation of China (No.9.4.4).
文摘Based on the motion equations of an unbalanced spherical rotor withcontactless suspension, three methods of MUM (mass unbalance measurement) are put forward to measurethe total mass unbalance, radical mass unbalance and radical mass unbalance of the rotor. Totalmass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total massunbalance of the rotor respectively. Analysis of the motion equations by using the averaging methodyields that the rotor will do a special side oscillation when an auxiliary system makes the rotorspin about its pole axis which is orientating toward the local vertical. The radical mass unbalancecan be obtained by building a proper displacement sensor to sense the amplitude of the sideoscillation. Necessary analysis of the motion equations also shows that when the rotor spins at asmall angular velocity and the rotary axis is perpendicular to the vertical, the pole axis of therotor will precess slowly about the vertical by virtue of the axial mass unbalance. The axial massunbalance can be estimated from the time history of the spin vector of the rotor. Finally,measurement precision of the three methods is compared and how the external torque affects themeasurement precision for the three methods are examined.
文摘Proper balance is essential for athletes during competition and training as sport places different balance requirements on the human body. The purpose of the study was to analyze balance performance among female athletes using COP (center of pressure) sway parameters. Twenty one NCAA (National Collegiate Athletic Association) division I female athletes (soccer, volleyball and dance) completed the study. Static balance was assessed using UST (unilateral stance test) and dynamic balance was assessed using MCT (motor control test) on the NeuroCom Equitest. Sway velocities, root mean square sway and reaction time latencies were used to quantify balance. A one-way between subjects ANOVA (analysis of variance) was performed to analyze these balance parameters. Significant (p 〈 0.05) differences between groups were found and post hoc comparisons revealed that the volleyball and dance groups had better static balance compared to soccer players, while both soccer and volleyball groups had better dynamic balance compared to the dance group. The results from the study indicate two points: first, differences in balance performance among female athletes in different sporting discipline; second, there is no relationship between static and dynamic balance. This indicates that it may be more beneficial to assess and train for static and dynamic balance individually.
基金The Undergraduate Teaching Reform Research Project of Liaoning Institute of Science and Technology in 2021"Research and Practice on the Construction of‘Dual Teachers and Dual Energy’Teachers in Applied Undergraduate Universities"(Grant Number:2021053)。
文摘In this paper,by analyzing the design and control scheme of the mooring system based on theoretical mechanics,force analysis is conducted on the buoy,steel pipe,steel drum,and anchor chain,and a reasonable mathematical model is constructed to solve the problems of the inclination angle of the steel drum and each section of the steel pipe,the shape of the anchor chain,the draft of the buoy,and the swimming area under different wind speeds,thus providing a reliable basis for the design of the system.
基金supported by the National Natural Science Foundation of China (No. 51175529)
文摘The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors' low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine's measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine's performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite's rotating payloads in terms of accuracy and stability.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ14F040001)the National Natural Science Foundation of China(Nos.61274132,61234002)the K.C.Wong Magna Fund in Ningbo University,China
文摘A power balance static random-access memory(SRAM) for resistance to differential power analysis(DPA) is proposed. In the proposed design, the switch power consumption and short-circuit power consumption are balanced by discharging and pre-charging the key nodes of the output circuit and adding an additional shortcircuit current path. Thus, the power consumption is constant in every read cycle. As a result, the DPA-resistant ability of the SRAM is improved. In 65 nm CMOS technology, the power balance SRAM is fully custom designed with a layout area of 5863.6 μm^2.The post-simulation results show that the normalized energy deviation(NED) and normalized standard deviation(NSD) are 0.099% and 0.04%, respectively. Compared to existing power balance circuits, the power balance ability of the proposed SRAM has improved 53%.
文摘Structural design for a drum of a CTP device and modal analysis by means of ANSYS workbench have been done to get the first four natural frequencies and vibration models.Natural frequency and maximum deformation of drum as the optimization goal,three kinds of proposals are put forward based on the weak area of the drum.By means of adjusting static balance and adding thickness,an optimal project 3 is determined the best in the three kinds of proposals.The first natural frequency of the drum optimized is increased by 33.1% than that before optimization,the maximum displacement is reduced by 23.2%.Testing the result of simulation meets image high quality requirements,dynamics analysis and structural optimization are realized.