期刊文献+
共找到126,698篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
1
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 Negative Poisson's ratio Gradient honeycomb structure Quasi-static compression Dynamic impact Titanium alloy
下载PDF
Cushioning Performance of Hilbert Fractal Sandwich Packaging Structures under Quasi-Static Compressions
2
作者 Xingye Xu Haiyan Song Lijun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期275-292,共18页
The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich str... The sandwich structure of cushioning packaging has an important influence on the cushioning performance.Mathematical fractal theory is an important graphic expression.Based on Hilbert fractal theory,a new sandwich structure was designed.The generation mechanism and recurrence formula of theHilbert fractal were expressed by Lin’s language,and the second-orderHilbert sandwich structure was constructed fromthermoplastic polyurethane.The constitutive model of the hyperelastic body was established by using the finite element method.With the unit mass energy absorption as the optimization goal,the fractal sandwich structure was optimized,and the best result was obtained when the order was 2.5 and the unit layer thickness was 0.75 mm.TheHilbert sandwich structure was compared with the rice-shaped sandwich structure commonly used in industry,and the Hilbert fractal structure had better energy absorption.This has practical significance for the development and application of newcushioning packaging structures. 展开更多
关键词 Hilbert fractal sandwich structure static compression buffer packaging
下载PDF
Rheological properties and concentration evolution of thickened tailings under the coupling effect of compression and shear 被引量:1
3
作者 Aixiang Wu Zhenqi Wang +3 位作者 Zhuen Ruan Raimund Bürger Shaoyong Wang Yi Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期862-876,共15页
Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations o... Cemented paste backfill(CPB)is a key technology for green mining in metal mines,in which tailings thickening comprises the primary link of CPB technology.However,difficult flocculation and substandard concentrations of thickened tailings often occur.The rheological properties and concentration evolution in the thickened tailings remain unclear.Moreover,traditional indoor thickening experiments have yet to quantitatively characterize their rheological properties.An experiment of flocculation condition optimization based on the Box-Behnken design(BBD)was performed in the study,and the two response values were investigated:concentration and the mean weighted chord length(MWCL)of flocs.Thus,optimal flocculation conditions were obtained.In addition,the rheological properties and concentration evolution of different flocculant dosages and ultrafine tailing contents under shear,compression,and compression-shear coupling experimental conditions were tested and compared.The results show that the shear yield stress under compression and compression-shear coupling increases with the growth of compressive yield stress,while the shear yield stress increases slightly under shear.The order of shear yield stress from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Under compression and compression-shear coupling,the concentration first rapidly increases with the growth of compressive yield stress and then slowly increases,while concentration increases slightly under shear.The order of concentration from low to high under different thickening conditions is shear,compression,and compression-shear coupling.Finally,the evolution mechanism of the flocs and drainage channels during the thickening of the thickened tailings under different experimental conditions was revealed. 展开更多
关键词 thickened tailings compression-shear coupling compressive yield stress shear yield stress CONCENTRATION
下载PDF
Quasi-static magnetic compression of field-reversed configuration plasma:amended scalings and limits from two-dimensional MHD equilibrium
4
作者 Abba Alhaji BALA 朱平 +8 位作者 李浩龙 丁永华 刘家兴 万遂 何莹 李达 王能超 饶波 王之江 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期58-67,共10页
In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equi... In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equilibriums numerically obtained using the Grad–Shafranov equation solver NIMEQ.Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated,which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices. 展开更多
关键词 magneto-hydrodynamic equilibrium Grad-Shafranov equation field reversed configuration NIMEQ magnetic compression
下载PDF
Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System
5
作者 Zhiqing Dong Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2024年第2期1977-1993,共17页
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image... With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective. 展开更多
关键词 Image encryption image compression hyperchaotic system compressed sensing
下载PDF
Generalized polynomial chaos expansion by reanalysis using static condensation based on substructuring
6
作者 D.LEE S.CHANG J.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期819-836,共18页
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen... This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs. 展开更多
关键词 forward uncertainty quantification(UQ) generalized polynomial chaos expansion(GPCE) static reanalysis method static condensation SUBSTRUCTURING
下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads
7
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION static and dynamic load IMPACT
下载PDF
Static Stretching Combined with Conscious Slower Breathing May Increase Parasympathetic Activity and Reduce Stress in Adult Women
8
作者 Mami Sakurai Yasushi Ikarashi +3 位作者 Masahiro Tabuchi Ailing Hu Takuji Yamaguchi Hiroyuki Kobayashi 《Health》 2024年第3期242-256,共15页
Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields t... Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields to not only increase muscle flexibility but also reduce stress. Additionally, conscious slower breathing (CSB) predominates parasympathetic activity, causing a relaxing effect. These results indicate that combining SST and CSB may be more useful in reducing stress. However, to the best of our knowledge, the effect of this combination remains unclear. Objective: This study aimed to elucidate the effects of the combination of SST and CSB on autonomic activity and stress in adult women. Methods: Eleven healthy Japanese adult female participants performed SST with nonconscious natural breathing for 20 min. The same participants performed SST in combination with CSB (2 s inspiratory and 4 s expiratory) for 20 min on another day. Salivary cortisol and chromogranin A levels were measured before and after stretching as stress markers of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. The coefficient of variation of the R-R interval (CVR-R) and high-frequency component (HF), which reflect parasympathetic nerve activity, and heart rate and low-frequency component (LF)/HF ratio, which reflect sympathetic nerve activity, were measured before, during, and after stretching. Results: SST decreased cortisol levels but with no significant changes in chromogranin A, heart rate, CVR-R, HF, or LF/HF ratio. The combination of SST and CSB increased CVR-R and HF levels in addition to decreasing cortisol levels but with no significant changes in chromogranin A, heart rate, or LF/HF levels. Conclusion: These results indicate that the combination of SST and CSB may increase parasympathetic activity and reduce stress. However, future randomized controlled trials with larger sample sizes should support this conclusion. 展开更多
关键词 static Stretching Conscious Slower Breathing Autonomic Activity Heart Rate Variability STRESS
下载PDF
CFD-PBM coupled modeling of the liquid-liquid dispersion characteristics and structure optimization for Kenics static mixer
9
作者 Junhai Deng Shilin Lan +4 位作者 Juchang Wu Shenghua Du Weidong Liu Luchang Han Yefeng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期173-188,共16页
Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its d... Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance. 展开更多
关键词 CFD Population balance Liquid-liquid dispersion Kenics static mixer
下载PDF
Dynamic characteristics of coal specimens with varying static preloading levels under low-frequency disturbance load
10
作者 WEN Xiao-ze FENG Guo-rui +5 位作者 GUO Jun YU Lu-yang QIAN Rui-peng ZHANG Jie ZHANG Peng-fei FENG Wen-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2644-2657,共14页
The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency di... The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant. 展开更多
关键词 low-frequency disturbance dynamic response coal specimens static preloading level
下载PDF
Acetaminophen overdose-induced acute liver injury can be alleviated by static magnetic field
11
作者 Han-Xiao Chen Xin-Yu Wang +11 位作者 Biao Yu Chuan-Lin Feng Guo-Feng Cheng Lei Zhang Jun-Jun Wang Ying Wang Ruo-Wen Guo Xin-Miao Ji Wen-Jing Xie Wei-Li Chen Chao Song Xin Zhang 《Zoological Research》 SCIE CSCD 2024年第3期478-490,共13页
Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacolog... Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses. 展开更多
关键词 ACETAMINOPHEN Acute liver injury static magnetic fields Oxidative stress DNA synthesis
下载PDF
Information-Theoretic Limits on Compression of Semantic Information
12
作者 Tang Jiancheng Yang Qianqian Zhang Zhaoyang 《China Communications》 SCIE CSCD 2024年第7期1-16,共16页
As conventional communication systems based on classic information theory have closely approached Shannon capacity,semantic communication is emerging as a key enabling technology for the further improvement of communi... As conventional communication systems based on classic information theory have closely approached Shannon capacity,semantic communication is emerging as a key enabling technology for the further improvement of communication performance.However,it is still unsettled on how to represent semantic information and characterise the theoretical limits of semantic-oriented compression and transmission.In this paper,we consider a semantic source which is characterised by a set of correlated random variables whose joint probabilistic distribution can be described by a Bayesian network.We give the information-theoretic limit on the lossless compression of the semantic source and introduce a low complexity encoding method by exploiting the conditional independence.We further characterise the limits on lossy compression of the semantic source and the upper and lower bounds of the rate-distortion function.We also investigate the lossy compression of the semantic source with two-sided information at the encoder and decoder,and obtain the corresponding rate distortion function.We prove that the optimal code of the semantic source is the combination of the optimal codes of each conditional independent set given the side information. 展开更多
关键词 rate distortion semantic communication semantic compression
下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines
13
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
下载PDF
A Novel Quantization and Model Compression Approach for Hardware Accelerators in Edge Computing
14
作者 Fangzhou He Ke Ding +3 位作者 DingjiangYan Jie Li Jiajun Wang Mingzhe Chen 《Computers, Materials & Continua》 SCIE EI 2024年第8期3021-3045,共25页
Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro... Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme. 展开更多
关键词 Edge computing model compression hardware accelerator power-of-two quantization
下载PDF
A whole process damage constitutive model for layered sandstone under uniaxial compression based on Logistic function
15
作者 LIU Dong-qiao GUO Yun-peng +1 位作者 LING Kai LI Jie-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2411-2430,共20页
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0... Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering. 展开更多
关键词 layered sandstone uniaxial compression damage evolution Logistic function constitutive model
下载PDF
The Static Stability Region of an Integrated Electricity-Gas System Considering Voltage and Gas Pressure
16
作者 Yunfei Mu Zhibin Liu +5 位作者 Xiangwei Guo Hongjie Jia Kai Hou Xiaodan Yu Bofeng Luo Hairun Li 《Engineering》 SCIE EI CAS CSCD 2024年第5期132-145,共14页
In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a ... In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching. 展开更多
关键词 Integrated electricity-gas system static stability region Continuation multi-energy flow Multidimensional hyperplane sampling
下载PDF
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
17
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
18
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Data from Twenty-Three FRB’s Confirm the Universe Is Static and Not Expanding
19
作者 Lyndon Errol Ashmore 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1152-1177,共26页
Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This ... Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This gives us the opportunity to test Dispersion Measure versus redshift predictions made by two models. The Macquart relation for an expanding Universe and the New Tired Light relationship in a static universe. In New Tired Light, redshifts are produced when a photon is absorbed and re-emitted by the electrons in the IGM which recoil on both occasions. Some of the energy of the photon has been transferred to the kinetic energy of the recoiling electron. The photon has less energy, a lower frequency and a longer wavelength. It has been redshifted. Since dispersion is due to an interaction between radio signals and these same electrons one would expect a direct relationship between DM and redshift in the New Tired light model. The relation is DM=(mec/2hre)ln(1+z)and contains no adjustable parameters—just a combination of universal constants related to the electron and photon. Notice that the relation is independent of the electron number density ne since a change in ne affects both the DM and redshift equally. A graph of DM versus ln(1 + z) will be a straight line of gradient (mec/2hre)and, using SI units, substituting for the constants gives 7.318 × 1025 m−2. Using the data from the 23 well localized FRB’s, with the weighting of the DM’s for expansion removed (so that the data corresponds to a static universe), a graph of DM versus ln(1 + z) has a gradient of 6.7 × 1025 m−2—9% below the predicted (mec/2hre). The Macquart relation involves highly processed data and adjustable parameters to allow for “dark energy” and “dark matter” (neither of which has yet been found) and can be reduced to DM = 850z (in units of pc∙cm−3). Using the data from this set of localized FRB’s gives a trendline with gradient 1.10 × 103 pc∙cm−3—almost 30% higher than that predicted in an expanding universe model. The FRB data clearly comes down in favour of a static universe rather than an expanding one. Combining the DM-z relationship for the 23 well localized FRB’s, with the Hubble diagram, drawn using the NED-D compilation of redshift independent extragalactic distances, produces a value of “ne” the mean electron number density of the IGM, of ne=0.48 m−3close to the value ne=0.5 m−3, long since predicted by NTL. 展开更多
关键词 REDSHIFT Dispersion Measure Fast Radio Bursts FRB’s Tired Light static Universe IGM
下载PDF
Static and Thermal Analysis of Aluminium (413,390,384 and 332) Piston Using Finite Element Method
20
作者 Offei David Inusah Jacob Kwaku Nkrumah Vincent Akolbire Atindana 《Modeling and Numerical Simulation of Material Science》 2024年第1期1-38,共38页
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut... The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders. 展开更多
关键词 Von Mise stress Total deformation Aluminium alloy Thermal analysis. PISTON static structural Heat fux
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部