期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Static response analysis of structures with interval parameters using the second-order Taylor series expansion and the DCA for QB 被引量:2
1
作者 Qi Li Zhiping Qiu Xudong Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第6期845-854,共10页
In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the... In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods. 展开更多
关键词 Interval parameters · Second-order Taylorseries expansion · static response of uncertain structures Quadratic programming problems · DCA
下载PDF
Experimental investigation on basic law of rock directional fracturing with static expansive agent controlled by dense linear multi boreholes 被引量:4
2
作者 ZHAO Xing-long HUANG Bing-xiang +2 位作者 CHENG Qing-ying WANG Chang-wei CHEN Shu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2499-2513,共15页
Directional rupture is one of the difficult problems in deep rock mechanics and engineering.A directional fracturing method with static expansive agent controlled by dense linear multi boreholes is proposed.A physical... Directional rupture is one of the difficult problems in deep rock mechanics and engineering.A directional fracturing method with static expansive agent controlled by dense linear multi boreholes is proposed.A physical experiment is designed and performed to investigate the basic laws of this method.The fracture initiation and propagation process,and the mechanism of directional fracturing are analyzed.The results indicate that a directional fracture is formed along the direction of boreholes layout through directionally fracturing with static expansive agents controlled by the dense linear multi boreholes.According to the variation of strain and the distribution of associated acoustic emission(AE)events and energy,the experiment can be divided into three stages.In the first stage,the static expansive agent expand slowly with no fracturing inside the rock.In the second stage,some initial micro-fracturing occurs inside the rock.In the third stage,a wide range of fracturing occurs inside the sample.The internal micro-fracturing planes are connected to form a macro-fracture.Finally,it propagates to the surface of the sample.The directional fracturing plane presents a relatively smooth plane with little bias but much local fluctuation. 展开更多
关键词 directional rupture static expansive agents superimposing of matrix stress directional initiation fracture propagation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部