We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum...We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum is obviously extended and the short quantum path is selected to contribute to the spectrum, because the corresponding long path is seriously suppressed. Then the combined Coulomb and laser field potentials and the time-dependent electron wave packet distributions are applied to illustrate the physical mechanism of high-order harmonic gen- eration. Finally, by adjusting the intensity of the static field and superposing a properly selected range of the HHG spectrum, a 90-as isolated attosecond pulse is straightforwardly obtained.展开更多
With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow th...With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.展开更多
Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacolog...Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses.展开更多
Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.unifo...Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.展开更多
This paper details the creation of a device capable of generating a powerful and consistent static magnetic field. This apparatus serves the purpose of quantifying the magnetostrictive strain found in materials like a...This paper details the creation of a device capable of generating a powerful and consistent static magnetic field. This apparatus serves the purpose of quantifying the magnetostrictive strain found in materials like annealed cobalt ferrite and Terfenol-D, specifically those shaped as cylindrical rods. In our investigation, the use of static magnetic fields proves most advantageous. This choice is made to mitigate the generation of eddy currents, which would inevitably occur if the magnetic field intensity were varied. The fundamental idea behind this design involves employing a C-shaped iron core constructed from low-carbon mild steel. On this core, three coils are mounted, each capable of producing one-third of the required 9000 Oersted (Oe) magnetic field strength. The test specimen is situated within the “jaws” of the C-shaped core, thus completing the magnetic circuit. To manage the heat generated by each coil, a cooling system consisting of copper tubes is employed. These tubes facilitate the flow of air to dissipate the heat. To model and predict the magnetic field strength produced by the coils, finite element analysis (FEMM) software is utilized, and the results align closely with the anticipated outcomes. This design effectively generates a robust and unchanging magnetic field measuring a stable 9000 Oe in total. Consequently, this equipment finds utility in characterizing the magnetic properties of specific materials.展开更多
By solving the magneto-transport equation for excess minority charge carriers in the base of the series vertical-junction silicon cell, the phenomenological parameters of the cell can be determined from the boundary c...By solving the magneto-transport equation for excess minority charge carriers in the base of the series vertical-junction silicon cell, the phenomenological parameters of the cell can be determined from the boundary conditions. Photocurrent density and photovoltage are determined for each value of applied magnetic field and corresponding optimum thickness, to establish the current-voltage characteristic (Jph(Sf, Sb, z, B, Hop)-Vph(Sf, Sb, z, B, Hop) of the silicon cell under polychromatic illumination. This study will make it possible to reduce the material used (by reducing the optimum thickness), which will help to lower prices. It will also enable us to reduce betting effects (lower series resistance), thereby boosting solar cell efficiency.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under ...The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under various static magnetic fields(SMFs).The results show that in the large couples,the α(Al) dendrites reveal a directional growth character whether without or with the SMF.However,the 12 T magnetic field induces regular growth,consistent deflection and the decrease of secondary arm spacing of the dendrites.In the small couples,the α(Al) dendrites still reveal a directional growth character to some extent with a SMF of ≤5 T.However,an 8.8 T SMF destroys the directional growth and induces severe random deflections of the dendrites.When the SMF increases to 12 T,the a(Al) dendrites become quite regular despite of the consistent deflection.The directional growth arises from the continuous long-range concentration gradient field built in the melt.The morphological modification is mainly related to the suppression of natural convections and the induction of thermoelectric magnetic convection by the SMF.展开更多
A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Nume...A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.展开更多
Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processin...Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.展开更多
Objective: To investigate the effects of static magnetic field(SMF) on the viability, adhesion molecule expression of human umbilical vessel endothelial cell. Methods: Magnetic flux intensity was 0. 1 mT, 1 mT, 10 mT....Objective: To investigate the effects of static magnetic field(SMF) on the viability, adhesion molecule expression of human umbilical vessel endothelial cell. Methods: Magnetic flux intensity was 0. 1 mT, 1 mT, 10 mT. Cell viability and proliferation were measured with 3H-TdR and MTT methods; and apoptosis of human umbilical vein endothelial cell (HUVEC) was studied by flow cytometry and transmission electric microscopy. ELISA was used to measure the expression of ICAM-1 and VCAM-1 on endothelium. Results: 0. 1 mT SMF had no effects on the growth of HUVEC. however,SMF of 1 mT, 10 mT attenuated growth of HUVEC. 10 mT static magnetic field could induce apoptosis and necrosis of HUVEC. 10 mT SMF enhanced the expression of ICAM-1 and VCAM-1 on endothelium. Conclusion: The effect of SMF depends on the intensity of SMF. 10 mT SMF has adverse effects on human umbilical vessel endothelial cell.展开更多
Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a ...Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a clapper relay in a uniform static magnetic field situation based on the finite element method (FEM) is studied. Influences of the magnetic field on dynamic parameters (delay time, pick-up time, end pressure, and final velocity) as well as a situation in which the relay cannot function normally are analyzed. Simulation reveals that the external magnetic field which weakens the relay’s air-gap field has a greater influence on the relay’s dynamic parameters than the one strengthening the field. The validity of the simulation is verified by measured results of coil current and armature displacement.展开更多
Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of...Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster ceils after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.展开更多
We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency r...We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.展开更多
Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and colle...Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF.展开更多
The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activit...The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.展开更多
Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field,and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique.The e...Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field,and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique.The experiment revealed that the amplitude of transient outward potassium channel current was reduced.The maximum activated current densities of control group and exposure group were 163.62±20.68 pA/pF and 98.74±16.57 pA/pF(n=12,P<0.01) respectively.The static magnetic field exposure affected the activation and inactivation process of transient outward potassium channel current.Due to the magnetic field exposure,the half-activation voltage of the activation curves changed from 5.59±1.96 mV to 27.87±7.24 mV(n=12,P<0.05) ,and the slope factor changed from 19.43±2.11 mV to 25.87±4.22 mV(n=12,P<0.05) .The half-inactivation voltage of the inactivation curves also changed from-56.09±0.89 mV to-57.16±1.10 mV(n=12,P>0.05) and the slope factor of the inactivation curves from 8.69±0.80 mV to 10.87±1.02 mV(n=12,P<0.05) .The results show that the static magnetic field can change the characteristics of transient outward K+ channel,and affect the physiological functions of neurons.展开更多
Hybrid hydrogels of carboxymethylcellulose (CMC), containing two different amounts of CoFe2O4 magnetic nanoparticles (50% and 70% in relation to the quantity of the polymer) as crosslinkers, were prepared. The hybrid ...Hybrid hydrogels of carboxymethylcellulose (CMC), containing two different amounts of CoFe2O4 magnetic nanoparticles (50% and 70% in relation to the quantity of the polymer) as crosslinkers, were prepared. The hybrid hydrogels were chemically and morphologically characterized and their viscoelastic properties and swelling degrees were analyzed. The hydrogels were tested as controlled drug delivery systems by applying one static and two different alternating magnetic fields. The application of the two alternating magnetic fields (AMF) to the hybrid hydrogels induced a higher release of methylene blue (MB), used as a model drug, than without the application of any magnetic field, especially at low frequency (4 Hz) and high magnetic intensity (0.5 T). In contrast, when the hybrid hydrogels were exposed to a static magnetic field (SMF) the release of MB was slowed down. Furthermore the two different amounts of magnetic nanoparticles induce different responses to the magnetic field. The greater number of nanoparticles in the CMC-NP-70 hydrogel leads to the formation of some NPs clusters limiting the drug release;conversely, the CMC-NP-50 hydrogel, containing a lower amount of nanoparticles, shows a higher release of MB vs. time. In conclusion, we were able to get a potential system for modulation of the drug delivery: the release behaviour of hybrid hydrogels can be modulated by applying alternating and static magnetic fields cyclically. A possible explanation for the release mechanism is about the structural modification of the polymeric chains that occurs when the hybrid hydrogels are exposed to the magnetic fields.展开更多
Rats suffering from adjuvant arthritis (AA) were used to examine the effect of a static magnetic field (SMF) upon pain relief. Rats were divided into SMF- treated AA rats, non-SMF treated AA rats and control rats. Fol...Rats suffering from adjuvant arthritis (AA) were used to examine the effect of a static magnetic field (SMF) upon pain relief. Rats were divided into SMF- treated AA rats, non-SMF treated AA rats and control rats. Following SMF stimulation, we measured blood flow volume in the paw and then reactive speed response to thermal stimulation. The AA groups exhibited significantly lower blood volume and reactivity to thermal stimulation compared to the control group. Compared to non-SMF, SMF exhibited increased blood flow volume in both the tail and paw, along with an increased reactive speed response to thermal stimulation. Our findings suggest that an improved of blood flow and reactive speed response, induced by SMF, appears to be effective for the relief of pain induced by chronic inflammation.展开更多
Human neuronal-like cells were exposed to static and 50 Hz electromagnetic fields at the intensities of 2 mT and 1 mT, respectively. The effects of exposure were investigated in the mid-infrared region by means of Fou...Human neuronal-like cells were exposed to static and 50 Hz electromagnetic fields at the intensities of 2 mT and 1 mT, respectively. The effects of exposure were investigated in the mid-infrared region by means of Fourier self deconvolu-tion spectroscopic analysis. After exposure of 3 hours to static and 50 Hz electromagnetic fields, the vibration bands of CH2 methilene group increased significantly after both exposures, suggesting a relative increase of lipid related to conformational changes in the cell membrane due to electromagnetic fields. In addition, PO2- stretching phosphate bands decreased after both exposures, suggesting that alteration in DNA/RNA can be occurred. In particular, exposure of 3 hours to 50 Hz electromagnetic fields produced significant increases in β-sheet contents in amide I, and around the 1740 cm?1 band assigned to non-hydrogen-bonded ester carbonyl stretching mode, that can be related to unfolding processes of proteins structure and cells death. Further exposure up to 18 hours to static magnetic field produced an increase in β-sheet contents as to α-helix components of amide I region, as well.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11404204the Key Project of the Ministry of Education of China under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province of China under Grant No2009021005
文摘We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum is obviously extended and the short quantum path is selected to contribute to the spectrum, because the corresponding long path is seriously suppressed. Then the combined Coulomb and laser field potentials and the time-dependent electron wave packet distributions are applied to illustrate the physical mechanism of high-order harmonic gen- eration. Finally, by adjusting the intensity of the static field and superposing a properly selected range of the HHG spectrum, a 90-as isolated attosecond pulse is straightforwardly obtained.
文摘With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.
基金supported by the National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+5 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Anhui Provincial Natural Science Foundation(2308085QE183,2308085QE181)CASHIPS Director’s Fund(YZJJ2024QN44,YZJJ2023QN43)Heye Health Technology Chong Ming Project(HYCMP2021010)China Post-doctoral Science Foundation(2023M743536)Science Research Fund for Postdoctoral in Anhui Province(2023B669)。
文摘Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses.
基金supported by the National Natural Science Foundation of China (U21A20148, 31900506, 52007185)International Partnership Program of the Chinese Academy of Sciences(116134KYSB20210052)+2 种基金Heye Health Technology Chong Ming Project(HYCMP2021010)CAS President’s International Fellowship Initiative Grant(2022VMA0009)CASHIPS Director’s Fund (BJPY2021A06,2021YZGH04, YZJJ2020QN26, YZJJZX202014, YZJJ2021QN32,YZJJ2023QN43)。
文摘Although 9.4 T magnetic resonance imaging(MRI) has been tested in healthy volunteers,its safety in diabetic patients is unclear.Furthermore,the effects of high static magnetic fields(SMFs),especially gradient vs.uniform fields,have not been investigated in diabetics.Here,we investigated the consequences of exposure to 1.0-9.4 T high SMFs of different gradients(>10 T/m vs.0-10 T/m)on type 1 diabetic(T1D) and type 2 diabetic(T2D) mice.We found that 14 h of prolonged treatment of gradient(as high as 55.5 T/m) high SMFs(1.0-8.6 T) had negative effects on T1D and T2D mice,including spleen,hepatic,and renal tissue impairment and elevated glycosylated serum protein,blood glucose,inflammation,and anxiety,while 9.4 T quasi-uniform SMFs at 0-10 T/m did not induce the same effects.In regular T1D mice(blood glucose>16.7 mmol/L),the>10 T/m gradient high SMFs increased malondialdehyde(P<0.01) and decreased superoxide dismutase(P<0.05).However,in the severe T1D mice(blood glucose≥30.0 mmol/L),the>10 T/m gradient high SMFs significantly increased tissue damage and reduced survival rate.In vitro cellular studies showed that gradient high SMFs increased cellular reactive oxygen species and apoptosis and reduced MS-1 cell number and proliferation.Therefore,this study showed that prolonged exposure to high-field(1.0-8.6 T)>10 T/m gradient SMFs(35-1 380 times higher than that of current clinical MRI)can have negative effects on diabetic mice,especially mice with severe T1D,whereas 9.4 T high SMFs at 0-10T/m did not produce the same effects,providing important information for the future development and clinical application of SMFs,especially high-field MRI.
文摘This paper details the creation of a device capable of generating a powerful and consistent static magnetic field. This apparatus serves the purpose of quantifying the magnetostrictive strain found in materials like annealed cobalt ferrite and Terfenol-D, specifically those shaped as cylindrical rods. In our investigation, the use of static magnetic fields proves most advantageous. This choice is made to mitigate the generation of eddy currents, which would inevitably occur if the magnetic field intensity were varied. The fundamental idea behind this design involves employing a C-shaped iron core constructed from low-carbon mild steel. On this core, three coils are mounted, each capable of producing one-third of the required 9000 Oersted (Oe) magnetic field strength. The test specimen is situated within the “jaws” of the C-shaped core, thus completing the magnetic circuit. To manage the heat generated by each coil, a cooling system consisting of copper tubes is employed. These tubes facilitate the flow of air to dissipate the heat. To model and predict the magnetic field strength produced by the coils, finite element analysis (FEMM) software is utilized, and the results align closely with the anticipated outcomes. This design effectively generates a robust and unchanging magnetic field measuring a stable 9000 Oe in total. Consequently, this equipment finds utility in characterizing the magnetic properties of specific materials.
文摘By solving the magneto-transport equation for excess minority charge carriers in the base of the series vertical-junction silicon cell, the phenomenological parameters of the cell can be determined from the boundary conditions. Photocurrent density and photovoltage are determined for each value of applied magnetic field and corresponding optimum thickness, to establish the current-voltage characteristic (Jph(Sf, Sb, z, B, Hop)-Vph(Sf, Sb, z, B, Hop) of the silicon cell under polychromatic illumination. This study will make it possible to reduce the material used (by reducing the optimum thickness), which will help to lower prices. It will also enable us to reduce betting effects (lower series resistance), thereby boosting solar cell efficiency.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
基金Projects(51201029,51071042,51374067)supported by the National Natural Science Foundation of ChinaProjects(N130409002,N130209001)supported by the Research Funds for the Central UniversitiesProject(2012M520637)supported by the China Postdoctoral Science Foundation
文摘The large and small sized Cu(solid)/Al(liquid) couples were prepared to investigate the directional growth behavior of primary a(Al) phase during a concentration-gradient-controlled solidification process under various static magnetic fields(SMFs).The results show that in the large couples,the α(Al) dendrites reveal a directional growth character whether without or with the SMF.However,the 12 T magnetic field induces regular growth,consistent deflection and the decrease of secondary arm spacing of the dendrites.In the small couples,the α(Al) dendrites still reveal a directional growth character to some extent with a SMF of ≤5 T.However,an 8.8 T SMF destroys the directional growth and induces severe random deflections of the dendrites.When the SMF increases to 12 T,the a(Al) dendrites become quite regular despite of the consistent deflection.The directional growth arises from the continuous long-range concentration gradient field built in the melt.The morphological modification is mainly related to the suppression of natural convections and the induction of thermoelectric magnetic convection by the SMF.
基金Project(51276203)supported by the National Natural Science Foundation of China
文摘A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained.
基金This work has been partially performed under the financial supports from the National Natural Science Foundation of China (Grant No.50204004)the National Fundamental Research Project - new generation steel research project of China (Grant No.G1998061
文摘Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.
文摘Objective: To investigate the effects of static magnetic field(SMF) on the viability, adhesion molecule expression of human umbilical vessel endothelial cell. Methods: Magnetic flux intensity was 0. 1 mT, 1 mT, 10 mT. Cell viability and proliferation were measured with 3H-TdR and MTT methods; and apoptosis of human umbilical vein endothelial cell (HUVEC) was studied by flow cytometry and transmission electric microscopy. ELISA was used to measure the expression of ICAM-1 and VCAM-1 on endothelium. Results: 0. 1 mT SMF had no effects on the growth of HUVEC. however,SMF of 1 mT, 10 mT attenuated growth of HUVEC. 10 mT static magnetic field could induce apoptosis and necrosis of HUVEC. 10 mT SMF enhanced the expression of ICAM-1 and VCAM-1 on endothelium. Conclusion: The effect of SMF depends on the intensity of SMF. 10 mT SMF has adverse effects on human umbilical vessel endothelial cell.
基金Project (No. 513230502) supported by the PLA General ArmamentDepartment of China
文摘Electromagnetic relay is a widely used apparatus which usually works in a magnetic disturbance environment. To evaluate its electromagnetic compatibility (EMC) in a static magnetic field, dynamic characteristics of a clapper relay in a uniform static magnetic field situation based on the finite element method (FEM) is studied. Influences of the magnetic field on dynamic parameters (delay time, pick-up time, end pressure, and final velocity) as well as a situation in which the relay cannot function normally are analyzed. Simulation reveals that the external magnetic field which weakens the relay’s air-gap field has a greater influence on the relay’s dynamic parameters than the one strengthening the field. The validity of the simulation is verified by measured results of coil current and armature displacement.
基金supported by National Natural Science Foundation of China (Nos. 30570442, 10225526)Hundred Talents Program of The Chinese Academy of Sciences and Foundation of President, of The Hefei Institutes of Physical Sciences, CAS
文摘Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster ceils after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.
基金Project supported by the Science Research Program of Hunan Province, China (Grant No. 2010FJ4092)the National Natural Science Foundation of China (Grant No. 11075073)
文摘We theoretically investigate the microwave absorption properties of hydrogen plasma in iron-catalyzed high- pressure disproportionation-grown carbon nanotubes under an external static magnetic field in the frequency range 0.3 GHz to 30 GHz, using the Maxwell equations in conjunction with a general expression for the effective complex permittivity of magnetized plasma known as the Appleton Hartree formula. The effects of the external static magnetic field intensity and the incident microwave propagation direction on the microwave absorption of hydrogen plasma in CNTs are studied in detail. The numerical results indicate that the microwave absorption properties of hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes can be obviously improved when the exter- nal static magnetic field is applied to the material. It is found that the specified frequency microwave can be strongly absorbed by the hydrogen plasma in iron-catalyzed high-pressure disproportionation-grown carbon nanotubes over a wide range of incidence angles by adjusting the external magnetic field intensity and the parameters of the hydrogen plasma.
基金Supported by the National Natural Science Foundation of China(51306104)
文摘Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF.
基金Supported by Tianjin Natural Science Foundation (No033603611)
文摘The effect of magnetic field on a-amylase was studied. Under the experimental conditions, a-amylase solution was treated by 0.15 T, 0.30 T and 0.45 T static magnetic fields for a known period of time, then the activity, kinetic parameters, and the secondary conformation were investigated. The results showed that there was a considerable effect of the magnetic exposure on the α-amylase. The activity was increased by 27%, 34.1%, 37.8% compared with the control. It was also found that both kinetic parameters Km and Vm could be decreased due to the increasing magnetic field, Km decreased from 2.20×10^2 to 0.87×10^2, whereas Vm decreased from 2.0×10^3 g/min to 1.1 ×10^3 g/min. At the same time, there were some irregular changes in a-amylase secondary conformation.
基金Supported by National Natural Science Foundation of China(No. 60674111)
文摘Acutely isolated mouse hippocampal CA3 pyramidal neurons were exposed to 3 mT static magnetic field,and the characteristics of transient outward K+ channel were studied using the whole-cell patch-clamp technique.The experiment revealed that the amplitude of transient outward potassium channel current was reduced.The maximum activated current densities of control group and exposure group were 163.62±20.68 pA/pF and 98.74±16.57 pA/pF(n=12,P<0.01) respectively.The static magnetic field exposure affected the activation and inactivation process of transient outward potassium channel current.Due to the magnetic field exposure,the half-activation voltage of the activation curves changed from 5.59±1.96 mV to 27.87±7.24 mV(n=12,P<0.05) ,and the slope factor changed from 19.43±2.11 mV to 25.87±4.22 mV(n=12,P<0.05) .The half-inactivation voltage of the inactivation curves also changed from-56.09±0.89 mV to-57.16±1.10 mV(n=12,P>0.05) and the slope factor of the inactivation curves from 8.69±0.80 mV to 10.87±1.02 mV(n=12,P<0.05) .The results show that the static magnetic field can change the characteristics of transient outward K+ channel,and affect the physiological functions of neurons.
文摘Hybrid hydrogels of carboxymethylcellulose (CMC), containing two different amounts of CoFe2O4 magnetic nanoparticles (50% and 70% in relation to the quantity of the polymer) as crosslinkers, were prepared. The hybrid hydrogels were chemically and morphologically characterized and their viscoelastic properties and swelling degrees were analyzed. The hydrogels were tested as controlled drug delivery systems by applying one static and two different alternating magnetic fields. The application of the two alternating magnetic fields (AMF) to the hybrid hydrogels induced a higher release of methylene blue (MB), used as a model drug, than without the application of any magnetic field, especially at low frequency (4 Hz) and high magnetic intensity (0.5 T). In contrast, when the hybrid hydrogels were exposed to a static magnetic field (SMF) the release of MB was slowed down. Furthermore the two different amounts of magnetic nanoparticles induce different responses to the magnetic field. The greater number of nanoparticles in the CMC-NP-70 hydrogel leads to the formation of some NPs clusters limiting the drug release;conversely, the CMC-NP-50 hydrogel, containing a lower amount of nanoparticles, shows a higher release of MB vs. time. In conclusion, we were able to get a potential system for modulation of the drug delivery: the release behaviour of hybrid hydrogels can be modulated by applying alternating and static magnetic fields cyclically. A possible explanation for the release mechanism is about the structural modification of the polymeric chains that occurs when the hybrid hydrogels are exposed to the magnetic fields.
文摘Rats suffering from adjuvant arthritis (AA) were used to examine the effect of a static magnetic field (SMF) upon pain relief. Rats were divided into SMF- treated AA rats, non-SMF treated AA rats and control rats. Following SMF stimulation, we measured blood flow volume in the paw and then reactive speed response to thermal stimulation. The AA groups exhibited significantly lower blood volume and reactivity to thermal stimulation compared to the control group. Compared to non-SMF, SMF exhibited increased blood flow volume in both the tail and paw, along with an increased reactive speed response to thermal stimulation. Our findings suggest that an improved of blood flow and reactive speed response, induced by SMF, appears to be effective for the relief of pain induced by chronic inflammation.
文摘Human neuronal-like cells were exposed to static and 50 Hz electromagnetic fields at the intensities of 2 mT and 1 mT, respectively. The effects of exposure were investigated in the mid-infrared region by means of Fourier self deconvolu-tion spectroscopic analysis. After exposure of 3 hours to static and 50 Hz electromagnetic fields, the vibration bands of CH2 methilene group increased significantly after both exposures, suggesting a relative increase of lipid related to conformational changes in the cell membrane due to electromagnetic fields. In addition, PO2- stretching phosphate bands decreased after both exposures, suggesting that alteration in DNA/RNA can be occurred. In particular, exposure of 3 hours to 50 Hz electromagnetic fields produced significant increases in β-sheet contents in amide I, and around the 1740 cm?1 band assigned to non-hydrogen-bonded ester carbonyl stretching mode, that can be related to unfolding processes of proteins structure and cells death. Further exposure up to 18 hours to static magnetic field produced an increase in β-sheet contents as to α-helix components of amide I region, as well.