The effects of thickness-to-chord(t=c)ratio,anhedral angle(d),and cropping ratio from trailing-edge(Cr%)on the aerodynamics of non-slender reverse delta wings in comparison to non-slender delta wings with sweep angle ...The effects of thickness-to-chord(t=c)ratio,anhedral angle(d),and cropping ratio from trailing-edge(Cr%)on the aerodynamics of non-slender reverse delta wings in comparison to non-slender delta wings with sweep angle of 45°were characterized in a low-speed wind tunnel using force and pressure measurements.The measurements were conducted for total of 8 different delta and reverse delta wings.Two different t/c ratios of 5.9%and 1.1%,and two different anhedral angles ofd=15°and 30°for non-cropped and cropped at Cr=30%conditions were tested.The results indicate that the reverse delta wings generate higher lift-to-drag ratio and have better longitudinal static stability characteristics compared to the delta wings.The wing thickness has favorable effect on longitudinal static stability for the reverse delta wing whereas longitudinal static stability is not influenced by wing thickness for the delta wing.For reverse delta wings,the anhe-draled wing without cropping has adverse effect on aerodynamic performance and decreases the lift-to-drag ratio.Cropping in anhedraled wing causes significant improvement in lift-to-drag ratio,shift in aerodynamic and pressure centers towards the trailing-edge,and enhancement in longitudi-nal static stability.展开更多
基金supported by Turkish Aerospace Industries,Inc.and Middle East Technical University(No.BAP TEZ-D-302-2021-10725).
文摘The effects of thickness-to-chord(t=c)ratio,anhedral angle(d),and cropping ratio from trailing-edge(Cr%)on the aerodynamics of non-slender reverse delta wings in comparison to non-slender delta wings with sweep angle of 45°were characterized in a low-speed wind tunnel using force and pressure measurements.The measurements were conducted for total of 8 different delta and reverse delta wings.Two different t/c ratios of 5.9%and 1.1%,and two different anhedral angles ofd=15°and 30°for non-cropped and cropped at Cr=30%conditions were tested.The results indicate that the reverse delta wings generate higher lift-to-drag ratio and have better longitudinal static stability characteristics compared to the delta wings.The wing thickness has favorable effect on longitudinal static stability for the reverse delta wing whereas longitudinal static stability is not influenced by wing thickness for the delta wing.For reverse delta wings,the anhe-draled wing without cropping has adverse effect on aerodynamic performance and decreases the lift-to-drag ratio.Cropping in anhedraled wing causes significant improvement in lift-to-drag ratio,shift in aerodynamic and pressure centers towards the trailing-edge,and enhancement in longitudi-nal static stability.