期刊文献+
共找到310篇文章
< 1 2 16 >
每页显示 20 50 100
DSNNs:learning transfer from deep neural networks to spiking neural networks 被引量:3
1
作者 Zhang Lei Du Zidong +1 位作者 Li Ling Chen Yunji 《High Technology Letters》 EI CAS 2020年第2期136-144,共9页
Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural netwo... Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets. 展开更多
关键词 DEEP leaning SPIKING neural network(snn) CONVERT METHOD spatially folded network
下载PDF
Stability Analysis for Recurrent Neural Networks with Time-varying Delay 被引量:2
2
作者 Yuan-Yuan Wu Yu-Qiang Wu 《International Journal of Automation and computing》 EI 2009年第3期223-227,共5页
This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent... This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones. 展开更多
关键词 static neural networks time-varying delay asymptotical stability DELAY-DEPENDENT linear matrix inequalities (LMIs).
下载PDF
基于灰度纹理特征提取和CS-SNN的双初级永磁同步直线电机退磁故障诊断研究 被引量:4
3
作者 刘铄 宋俊材 +2 位作者 陆思良 吴先红 丁伟 《中国电机工程学报》 EI CSCD 北大核心 2023年第16期6464-6473,共10页
引入一种基于图像形态学纹理特征提取与布谷鸟搜索优化脉冲神经网络(cuckoo search-spiking neural network,CS-SNN)算法相结合的方法,以解决双初级永磁同步直线电机(dual primary permanent magnet synchronous linear motor,DPPMSLM)... 引入一种基于图像形态学纹理特征提取与布谷鸟搜索优化脉冲神经网络(cuckoo search-spiking neural network,CS-SNN)算法相结合的方法,以解决双初级永磁同步直线电机(dual primary permanent magnet synchronous linear motor,DPPMSLM)退磁故障精细定量化诊断识别的问题。首先,根据DPPMSLM拓扑结构约束,通过有限元仿真提取电机气隙空间中三线磁密信号作为有效故障信号;其次,引入图像纹理分析的方法,将一维数据信号映射为二维灰度图像,再采用伽马矫正和边缘提取技术增强图像信息,以提取图像纹理特征组成故障特征向量;然后建立两级CS-SNN分类器实现退磁故障位置类型和严重程度的精确诊断分类;最后,通过退磁样机制作和实验平台验证,提出的新方法能够准确识别DPPMSLM退磁故障位置和严重程度,并具有良好的鲁棒性,是一种有效可行的方法。 展开更多
关键词 双初级永磁同步直线电机 退磁故障诊断 图像纹理分析 故障特征向量 布谷鸟搜索优化脉冲神经网络
下载PDF
Artificial Neural Network in Harmonic Reduction of STATCOM 被引量:1
4
作者 LiHongmei LiZhenran ZhengPeiying 《Electricity》 2005年第1期34-37,共4页
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory,... To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved. 展开更多
关键词 static synchronous compensator (STATCOM) artificial neural network(ANN) HARMONICS
下载PDF
基于SNN-LSTM的小样本数据下轴承故障诊断方法 被引量:6
5
作者 吕云开 武兵 李聪明 《机电工程》 CAS 北大核心 2023年第1期62-68,共7页
基于深度学习的故障诊断方法的实现,需要用到大量的、有标注的训练样本,而在小样本数据下,采用这些方法会产生模型欠拟合问题,同时获得的分类准确率也较低。为了解决上述问题,提出了一种小样本数据下结合孪生神经网络(SNN)与长短时记忆... 基于深度学习的故障诊断方法的实现,需要用到大量的、有标注的训练样本,而在小样本数据下,采用这些方法会产生模型欠拟合问题,同时获得的分类准确率也较低。为了解决上述问题,提出了一种小样本数据下结合孪生神经网络(SNN)与长短时记忆网络(LSTM)的轴承故障诊断方法。首先,以一对带有正负标签的原始振动信号样本作为诊断方法的输入,采用比较二者相似度的方法,扩充了训练样本个数;然后,采用共享提取样本对特征网络参数的方法,完成了SNN的搭建过程;使用卷积层、池化层及LSTM层提取了原始振动信号的特征,通过计算二者之间的曼哈顿距离,判断输入样本对的相似度,对不同状态下的轴承完成了分类;最后,为了验证基于SNN-LSTM的故障诊断方法在轴承故障诊断中的有效性,通过轴承故障诊断实验,采集了在不同转速、不同状态下的轴承振动信号数据。研究结果表明:当样本数量仅为140个,采用基于SNN-LSTM的故障诊断方法的准确率达到80.57%,相比于深度学习经典方法,在小样本数据下采用该方法具有更高的诊断准确率。 展开更多
关键词 深度学习 孪生神经网络 长短时记忆网络 训练样本 模型欠拟合 分类准确率 曼哈顿距离
下载PDF
Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
6
作者 Wenwu Jiang Jie Li +4 位作者 Hongbo Liu Xicong Qian Yuan Ge Lidan Wang Shukai Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期225-233,共9页
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,... Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network. 展开更多
关键词 MEMRISTOR multi-synaptic circuit spiking neuron spiking neural network(snn)
下载PDF
Analysis and Neural Networks Modeling of Web Server Performances Using MySQL and PostgreSQL
7
作者 Fontaine Rafamantanantsoa Maherindefo Laha 《Communications and Network》 2018年第4期142-151,共10页
The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of ... The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of instances of clients simultaneously requesting the same Web page that contains the same SQL queries, the number of tables queried by the SQL, the number of records to be displayed on the requested Web pages, and the type of used database server. This work demonstrates the influences of these parameters on the results of Web server performance analyzes. For the MySQL database server, it has been observed that the mean response time of the Web server tends to become increasingly slow as the number of client connection occurrences as well as the number of records to display increases. For the PostgreSQL database server, the mean response time of the Web server does not change much, although there is an increase in the number of clients and/or size of information to be displayed on Web pages. Although it has been observed that the mean response time of the Web server is generally a little faster for the MySQL database server, it has been noted that this mean response time of the Web server is more stable for PostgreSQL database server. 展开更多
关键词 Web SERVER PERFORMANCES neural network Database SERVER MYSQL POSTGRESQL APACHE Mean Response Time APACHE Benchmark snnS
下载PDF
小样本下基于决策树-SNN的恶意流量检测方法 被引量:1
8
作者 李道全 李玉秀 任大用 《计算机工程与应用》 CSCD 北大核心 2023年第21期258-266,共9页
针对目前小样本下的恶意流量检测方法存在准确度低、特征提取不足和模型过拟合问题,提出了一种小样本下基于改进决策树-孪生神经网络的恶意流量检测算法。为了降低小样本下多分类任务的难度,利用类间中心距离构建二叉决策树将多分类问... 针对目前小样本下的恶意流量检测方法存在准确度低、特征提取不足和模型过拟合问题,提出了一种小样本下基于改进决策树-孪生神经网络的恶意流量检测算法。为了降低小样本下多分类任务的难度,利用类间中心距离构建二叉决策树将多分类问题转换为二分类问题。将孪生神经网络的对比分支设计为三支一维卷积神经网络并行的结构来解决小样本下特征提取不足问题。引入了通过池化策略和一维卷积操作优化的SE(squeeze-andexcitation)模块,以减少小样本下模型过拟合问题。通过对比样本的相似度实现了恶意流量检测。实验结果表明,所提方法在小样本下的恶意流量检测问题上具有良好的效果。 展开更多
关键词 恶意流量 决策树 孪生神经网络 类间中心距离 小样本 通道注意力
下载PDF
基于联合权重超图划分的SNN负载均衡方法
9
作者 徐聪 叶钧超 +1 位作者 黄尧 柴志雷 《计算机应用研究》 CSCD 北大核心 2023年第7期2130-2137,共8页
大规模脉冲神经网络并行模拟是探究大脑机能的重要手段。其难点在于合理地将负载映射到并行分布式平台上,提升模拟速度。为解决该问题,提出一种基于联合权重超图划分的SNN负载均衡方法,解决并行计算中进程间计算负载与通信负载的均衡问... 大规模脉冲神经网络并行模拟是探究大脑机能的重要手段。其难点在于合理地将负载映射到并行分布式平台上,提升模拟速度。为解决该问题,提出一种基于联合权重超图划分的SNN负载均衡方法,解决并行计算中进程间计算负载与通信负载的均衡问题,提高SNN模拟速度,并使用稀疏通信的方式替代集体通信,解决事件通信过程中的数据冗余问题,提升通信效率。实验结果表明,该方法使带有STDP突触20%规模的皮质层微电路模型的模拟时间,比标准循环分配算法缩短约64.5%,比普通超图分配算法缩短约57.4%,同时事件通信数据量减少了90%以上。 展开更多
关键词 脉冲神经网络 负载均衡 联合权重 超图划分 并行计算
下载PDF
多孔质静压轴承静态特性预测研究 被引量:1
10
作者 闫如忠 石俊伟 +1 位作者 马晓建 安星宇 《机械科学与技术》 CSCD 北大核心 2024年第3期490-496,共7页
在多孔质静压轴承设计中,轴承设计参数是影响其静动态特性的关键因素之一,通常情况下,要得到合适的轴承设计参数,需要多次重复建模和仿真,且由于轴承结构复杂,建模难度大,仿真时间长,严重影响了轴承的设计效率。本文构建了一种基于遗传... 在多孔质静压轴承设计中,轴承设计参数是影响其静动态特性的关键因素之一,通常情况下,要得到合适的轴承设计参数,需要多次重复建模和仿真,且由于轴承结构复杂,建模难度大,仿真时间长,严重影响了轴承的设计效率。本文构建了一种基于遗传算法(Genetic algorithm,GA)优化反向传播(Back propagation, BP)神经网络的轴承静态特性预测模型,采用拉丁超立方抽样方法在轴承参数设计空间内采样,并进行Fluent流体仿真,将仿真数据用于GA-BP神经网络模型的训练与测试,实现了对设计空间内任意设计参数下的多孔质静压轴承静态特性的预测。研究结果表明,训练出的GA-BP神经网络模型能够准确预测多孔质静压轴承的静态特性,预测精度在95%以上,对多孔质静压轴承的快速设计和参数优化具有重要意义。 展开更多
关键词 多孔质静压轴承 静态特性 GA-BP神经网络 拉丁超立方抽样 预测
下载PDF
基于深度学习的钝体断面外形气动性能高效预测方法 被引量:1
11
作者 李少鹏 李海 李珂 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期122-129,共8页
对于气动性能,钝体断面的气动外形非常重要,采用传统风洞试验及CFD模拟计算得到钝体断面气动性能需消耗大量时间,大大影响钝体断面气动外形的气动性能评估效率。通过卷积神经网络深度学习技术实现对气动性能的快速预测,深度学习模型训... 对于气动性能,钝体断面的气动外形非常重要,采用传统风洞试验及CFD模拟计算得到钝体断面气动性能需消耗大量时间,大大影响钝体断面气动外形的气动性能评估效率。通过卷积神经网络深度学习技术实现对气动性能的快速预测,深度学习模型训练完成后,输入形状信息和与形状相关的流场信息,即可输出不同几何形状下的阻力系数,进而得到钝体断面的气动性能。为寻找性能最优的深度学习模型,通过综合判定误差和参数量大小对卷积神经网络结构的深度和宽度进行优化。对深度学习模型输出阻力系数与CFD计算结果进行对比发现,误差符合预期要求,并且相较于传统方法,基于深度学习网络的预测所需时间达到数量级的提升,未来可作为钝体断面气动外形优化的关键方法。 展开更多
关键词 桥梁静风力 钝体断面 气动性能 深度学习 卷积神经网络
下载PDF
数控机床旋转轴多自由度静/热误差同步测量与建模
12
作者 李国龙 肖扬 +2 位作者 李喆裕 徐凯 张薇 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1426-1434,共9页
针对现有的数控机床旋转轴误差测量与建模方法仅考虑多自由度静态几何误差或单自由度热误差单独作用的影响,未考虑几何误差和热误差耦合影响的问题,提出了一种基于球杆仪的数控机床旋转轴多自由度静/热误差同步测量与建模方法。首先基... 针对现有的数控机床旋转轴误差测量与建模方法仅考虑多自由度静态几何误差或单自由度热误差单独作用的影响,未考虑几何误差和热误差耦合影响的问题,提出了一种基于球杆仪的数控机床旋转轴多自由度静/热误差同步测量与建模方法。首先基于齐次坐标变换建立球杆仪杆长变化模型,再基于该模型使用非齐次线性方程组建立静/热误差辨识模型;其次设计了适应多自由度静/热误差同步测量的球杆仪安装模式以缩短测量时间,减少热逸散对测量结果的影响;再次基于卷积长短期记忆神经网络(CNN-LSTM)建立旋转轴多自由度静/热误差预测模型;最后在数控蜗杆砂轮磨齿机的C轴上进行误差测量实验,对多种转速下的旋转轴多自由度误差进行快速辨识,并通过CNN-LSTM静/热误差预测模型对多自由度误差和球杆仪杆长变化进行预测,以验证所建模型的准确性。 展开更多
关键词 静/热误差 误差测量 卷积长短期记忆神经网络 旋转轴 球杆仪
下载PDF
基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法
13
作者 李林 左林龙 +1 位作者 胡涛涛 宋博恺 《岩土力学》 EI CAS CSCD 北大核心 2024年第10期2889-2899,共11页
固结系数是软基沉降计算和稳定性分析的关键参数,现有固结系数原位测试方法存在耗时长且精度低的缺点。根据孔压静力触探试验(piezoconepenetrationtest,简称CPTU)贯入机制与锥肩超孔隙水压力消散模式,采用圆孔扩张理论和轴对称固结方... 固结系数是软基沉降计算和稳定性分析的关键参数,现有固结系数原位测试方法存在耗时长且精度低的缺点。根据孔压静力触探试验(piezoconepenetrationtest,简称CPTU)贯入机制与锥肩超孔隙水压力消散模式,采用圆孔扩张理论和轴对称固结方程描述CPTU锥肩超孔隙水压力的形成、发展和消散过程,利用神经网络自动微分功能将轴对称固结方程嵌入深度神经网络,通过物理方程损失函数、边界条件损失函数和初始条件损失函数形成神经网络的物理信息约束,同时将CPTU孔压测试数据作为数据驱动项,以最小化超孔隙水压力损失函数为优化目标,建立了CPTU孔压测试数据反演场地原位固结系数的物理信息神经网络(physics-informed neural networks,简称PINNs)模型。通过已有离心模型试验数据反演验证了PINNs模型反演场地原位固结系数的有效性,并利用CPTU孔压测试数据分析了PINNs模型反演原位固结系数的鲁棒性。结果表明:提出的PINNs模型能够有效利用CPTU孔压测试数据快速准确地反演场地原位固结系数;由于模型融入了物理机制约束,所需训练数据量少,且对有噪声的孔压测试数据具有较强的鲁棒性和泛化性能,为准确、快速可靠测试场地原位固结系数提供了有效途径。 展开更多
关键词 原位固结系数 静力触探 孔压测试数据 固结方程 物理信息神经网络 参数反演
下载PDF
基于MEA-BP神经网络的多孔质轴承参数优化
14
作者 闫如忠 余智 《机床与液压》 北大核心 2024年第16期177-182,共6页
为了提高圆盘类多孔质静压止推轴承的静态特性,采用思维进化算法(MEA)优化反向传播(BP)神经网络,创建圆盘类多孔质静压止推轴承静态特性的预测模型,完成轴承静态承载力、静刚度以及耗气量的高精度预测,其预测误差分别低于2%、5%以及5%... 为了提高圆盘类多孔质静压止推轴承的静态特性,采用思维进化算法(MEA)优化反向传播(BP)神经网络,创建圆盘类多孔质静压止推轴承静态特性的预测模型,完成轴承静态承载力、静刚度以及耗气量的高精度预测,其预测误差分别低于2%、5%以及5%。基于此模型,以最大化静态承载力和静刚度、最小化耗气量为优化目标值,采用遗传算法对轴承的多孔质参数组合进行多目标优化,实现轴承参数的快速优化设计。优化结果表明:此轴承静态承载力提高了64.53%,静刚度提高了31.93%,耗气量降低了56.52%。 展开更多
关键词 多孔质静压止推轴承 MEA-BP神经网络 静态特性预测 多目标优化
下载PDF
自校准首脉冲时间编码神经元模型 被引量:1
15
作者 冯忍 陈云华 +1 位作者 熊志民 陈平华 《计算机科学》 CSCD 北大核心 2024年第3期244-250,共7页
由于脉冲神经元具有复杂的时空动力过程且脉冲信息不可导,脉冲神经网络(SNN)的训练一直是一个难题。基于人工神经网络(ANN)转SNN间接训练深度SNN的方法,避免了直接训练深度SNN的难题,但该方法所获得的SNN的性能在很大程度上会受到脉冲... 由于脉冲神经元具有复杂的时空动力过程且脉冲信息不可导,脉冲神经网络(SNN)的训练一直是一个难题。基于人工神经网络(ANN)转SNN间接训练深度SNN的方法,避免了直接训练深度SNN的难题,但该方法所获得的SNN的性能在很大程度上会受到脉冲信息编码机制的影响。在众多编码机制中,首脉冲时间编码(TTFS)具有良好的生物学基础和更高的能效,但现有TTFS编码采用单脉冲形式,信息表征能力较弱,编码所需时间窗较大。为此,在TTFS的单脉冲编码基础上,增加一个校准脉冲,形成一种自校准首脉冲时间(SC-TTFS)编码机制,并构建相应的SC-TTFS神经元模型。在SC-TTFS中,首脉冲为必定发放的脉冲,而校准脉冲根据首脉冲发放后剩余的膜电位来确定是否发放,用于对编码脉冲所引起的转换量化误差和截断误差进行补偿,同时缩小编码所需的时间窗。通过对多种编码对应的转换误差进行对比分析,以及在多种网络结构上进行ANN-SNN转换实验,验证了所提方法的优越性。采用CIFAR10和CIFAR100数据集,基于VGG和ResNet两种网络结构进行了实验验证。结果表明,所提方法在两类网络结构和两种数据集上均实现了精度无损的ANN-SNN转换,且相较于最先进的同类方法,所提方法所构建的SNN具有最短的网络推理延迟。另外,在VGG结构上,所提方法相比TTFS编码能源效率提升了约80%。 展开更多
关键词 脉冲神经网络 脉冲编码机制 ANN-snn转化
下载PDF
基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法 被引量:1
16
作者 李浩 黄晓峰 +1 位作者 邹豪杰 孙英杰 《电气技术》 2024年第2期12-20,共9页
针对工业场景下滚动轴承信号易受噪声干扰,导致故障诊断准确率低和稳定性差的问题,本文提出一种基于软阈值降噪的脉冲卷积神经网络诊断方法。该方法使用软阈值滤波去噪,运用带时间标签的卷积层处理二维信号,增强动态特征提取能力。同时... 针对工业场景下滚动轴承信号易受噪声干扰,导致故障诊断准确率低和稳定性差的问题,本文提出一种基于软阈值降噪的脉冲卷积神经网络诊断方法。该方法使用软阈值滤波去噪,运用带时间标签的卷积层处理二维信号,增强动态特征提取能力。同时,通过引入IF和LIF神经元实现对时域和频域信息的联合编码,并采用替代梯度法进行端到端训练。实验结果显示,在信噪比为6dB时,所提方法的诊断准确率达100%,在信噪比为-6dB时诊断准确率达77.33%,优于其他常用方法,表明所提方法在噪声下具有良好的诊断效果和稳定性。 展开更多
关键词 故障诊断 软阈值 脉冲神经网络(snn) 替代梯度法
下载PDF
基于脉冲序列标识的深度脉冲神经网络时空反向传播算法
17
作者 王子华 叶莹 +3 位作者 刘洪运 许燕 樊瑜波 王卫东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2596-2604,共9页
尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深... 尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深度脉冲神经网络训练的基于时间脉冲序列标识的监督学习算法,通过定义突触后电位和膜电位反传迭代因子分别分析脉冲神经元的空间和时间依赖关系,使用替代梯度的方法解决反传过程中不连续可微的问题。不同于现有基于尖峰放电速率标识的学习算法,该算法能够充分反映脉冲神经网络输出的时间脉冲序列的动态特性。因此,所提算法非常适合应用于需要较长时间序列标识的计算任务,例如行为的时间脉冲序列控制。该文在静态图像数据集CIFAR10和神经形态数据集NMNIST上验证了所提算法的有效性,在所有这些数据集上都显示出良好的性能,这有助于进一步研究基于时间脉冲序列应用的大脑启发计算。 展开更多
关键词 脉冲神经网络 监督学习 误差反向传播 时间脉冲序列标识 替代梯度
下载PDF
跨脉冲传播的深度脉冲神经网络训练方法
18
作者 曾建新 陈云华 +1 位作者 李炜奇 陈平华 《计算机应用研究》 CSCD 北大核心 2024年第7期2134-2140,共7页
基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确... 基于反向传播的脉冲神经网络(SNNs)的训练方法仍面临着诸多问题与挑战,包括脉冲发放过程不可微分、脉冲神经元具有复杂的时空动力过程等。此外,SNNs反向传播训练方法往往没有考虑误差信号在相邻脉冲间的关系,大大降低了网络模型的准确性。为此,提出一种跨脉冲误差传播的深度脉冲神经网络训练方法(cross-spike error backpropagation,CSBP),将神经元的误差反向传播分成脉冲发放时间随突触后膜电位变化关系和相邻脉冲发放时刻点间的依赖关系两种依赖关系。其中,通过前者解决了脉冲不可微分的问题,通过后者明确了脉冲间的依赖关系,使得误差信号能跨脉冲传播,提升了生物合理性。此外,并对早期脉冲残差网络架构存在的模型表示能力不足问题进行研究,通过修改脉冲残余块的结构顺序,进一步提高了网络性能。实验结果表明,所提方法比基于脉冲时间的最优训练算法有着明显的提升,相同架构下,在CIFAR10数据集上提升2.98%,在DVS-CIFAR10数据集上提升2.26%。 展开更多
关键词 脉冲神经网络 脉冲时间依赖 误差反向传播 脉冲神经网络训练算法
下载PDF
机器人类脑智能研究综述
19
作者 王瑞东 王睿 +1 位作者 张天栋 王硕 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1485-1501,共17页
传统机器人经过长时间的研究和发展,已经在生产和生活的多个领域得到了广泛的应用,但在复杂多变的环境中依然缺乏与真实生物类似的灵活性、稳定性和适应能力.类脑智能作为一种新型的机器智能,使用计算建模的方法模拟生物神经系统的各类... 传统机器人经过长时间的研究和发展,已经在生产和生活的多个领域得到了广泛的应用,但在复杂多变的环境中依然缺乏与真实生物类似的灵活性、稳定性和适应能力.类脑智能作为一种新型的机器智能,使用计算建模的方法模拟生物神经系统的各类特性,进而实现对各类信息的推理和决策,近年来受到了学术界的广泛关注.鉴于此,综述了国内外面向机器人系统的类脑智能研究现状,并对类脑智能方法在机器人感知、决策和控制三个研究方向的成果进行了整理、归纳和分析,最后从软硬件层面分别指出了机器人类脑智能目前存在的主要问题和未来的发展方向. 展开更多
关键词 机器人 类脑机器人 类脑智能 脉冲神经网络
下载PDF
基于自适应时间步脉冲神经网络的高效图像分类
20
作者 李千鹏 贾顺程 +1 位作者 张铁林 陈亮 《自动化学报》 EI CAS CSCD 北大核心 2024年第9期1724-1735,共12页
脉冲神经网络(Spiking neural network,SNN)由于具有相对人工神经网络(Artifcial neural network,ANN)更低的计算能耗而受到广泛关注.然而,现有SNN大多基于同步计算模式且往往采用多时间步的方式来模拟动态的信息整合过程,因此带来了推... 脉冲神经网络(Spiking neural network,SNN)由于具有相对人工神经网络(Artifcial neural network,ANN)更低的计算能耗而受到广泛关注.然而,现有SNN大多基于同步计算模式且往往采用多时间步的方式来模拟动态的信息整合过程,因此带来了推理延迟增大和计算能耗增高等问题,使其在边缘智能设备上的高效运行大打折扣.针对这个问题,本文提出一种自适应时间步脉冲神经网络(Adaptive timestep improved spiking neural network,ATSNN)算法.该算法可以根据不同样本特征自适应选择合适的推理时间步,并通过设计一个时间依赖的新型损失函数来约束不同计算时间步的重要性.与此同时,针对上述ATSNN特点设计一款低能耗脉冲神经网络加速器,支持ATSNN算法在VGG和ResNet等成熟框架上的应用部署.在CIFAR10、CIFAR100、CIFAR10-DVS等标准数据集上软硬件实验结果显示,与当前固定时间步的SNN算法相比,ATSNN算法的精度基本不下降,并且推理延迟减少36.7%~58.7%,计算复杂度减少33.0%~57.0%.在硬件模拟器上的运行结果显示,ATSNN的计算能耗仅为GPU RTX 3090Ti的4.43%~7.88%.显示出脑启发神经形态软硬件的巨大优势. 展开更多
关键词 脉冲神经网络 低功耗推理 高效训练 低延迟
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部