期刊文献+
共找到147,971篇文章
< 1 2 250 >
每页显示 20 50 100
Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review 被引量:80
1
作者 Xibing Li Fengqiang Gong +5 位作者 Ming Tao Longjun Dong Kun Du Chunde Ma Zilong Zhou Tubing Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期767-782,共16页
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the... Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced. 展开更多
关键词 Deep rock mechanics Coupled static-dynamic loading ROCKBURST Discontinuous rock failure Microseismic source location Continuous mining
下载PDF
Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading 被引量:18
2
作者 Xianjie Hao Weisheng Du +4 位作者 Yixin Zhao Zhuowen Sun Qian Zhang Shaohua Wang Haiqing Qiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期659-668,共10页
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test... The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction. 展开更多
关键词 COAL Coupled static-dynamic loading SHPB Dynamic fracture behaviour Crack propagation
下载PDF
Dynamic response and failure behavior of rock under static-dynamic loading 被引量:7
3
作者 陈枫 马春德 徐纪成 《Journal of Central South University of Technology》 2005年第3期354-358,共5页
Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simul... Dynamic response and failure behavior of rock under static-dynamic loading were studied. The effects of initial static load on the total energy dissipated during the failure process of specimen were analyzed. To simulate the engineering situation that in-situ rock experienced and obtain the dynamic loading with an intermediate strain rate, a low cycle fatigue load with the frequency from 0.5 to 5 Hz was adopted by servo-controlled Instron material testing system. The results show that the obtained strain rate increase with the increase of load frequency. The initial static load has great influence on both the energy and dynamic response of rock. Both the energy and the maximum failure load P_f decreases with the increase of initial static load. P_f under the static-dynamic loading is larger than that under only the static loading but less than that under only the dynamic loading. The load-displacement curves become nonlinear as the pre-added static load reaches the transition point which is about one third of static strength. With the increase of initial static load, Young’s modulus decreases and poisson ratio increases. It shows that rock has a lower strength and a tendency to soften under a higher initial static load. Rock may be broken more easily static-dynamic loading than under only the dynamic loading. The proposed method is useful in the investigation of constitutive relationship and failure behavior of rock under quasi-dynamic loading. 展开更多
关键词 dynamic response ROCK static-dynamic loading strain rate
下载PDF
Crack propagation mechanism of compression-shear rock under static-dynamic loading and seepage water pressure 被引量:8
4
作者 周志华 曹平 叶洲元 《Journal of Central South University》 SCIE EI CAS 2014年第4期1565-1570,共6页
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor... To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing. 展开更多
关键词 static-dynamic loading seepage pressure stress intensity factor initiation of crack
下载PDF
Supporting characteristics analysis of constant resistance bolts under coupled static-dynamic loading
5
作者 CHEN Feng TANG Chun-an +2 位作者 SUN Xiao-ming MA Tian-hui DU Yan-hong 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1160-1169,共10页
To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical... To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical test results show that the plastic strain value is 12 times the magnitude of the elastic strain. During plastic deformation, the fluctuation in the stress magnitude is relatively stable, indicating that the bolt has good constant resistance characteristics. The numerical test results are in good agreement with the laboratory test results of M.C. He, and the accuracy and reliability of the numerical test method are verified. Therefore, the RFPA software with coupled static-dynamic loading is further adopted to study the supporting effects of traditional bolts and constant resistance bolts under coupled staticdynamic loading. The numerical comparison of the test results show that the constant resistance bolts can effectively control the deformation amount and rate of the laneway surrounding rock, reduce the total and rate of increase in the accumulated acoustic emissions,decrease the stress on the units in the model and protect the stability of the laneway. This paper verifies that a constant resistance bolt has better impact resistance mechanical properties than those of a traditional bolt and provides an effective way to control rock burst and soft rock that is prone to large deformation damage. 展开更多
关键词 Rock mechanics COUPLED static-dynamic loading Deep laneway CONSTANT RESISTANCE BOLT RFPA
下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads
6
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading 被引量:1
7
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading Volume fraction Damage evolution 3D visualization
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
8
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading 被引量:1
9
作者 Kewei Fan Guangqing Yang +2 位作者 Weilie Zou Zhong Han Yang Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1388-1397,共10页
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t... Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests. 展开更多
关键词 Retaining wall Expanded polystyrene(EPS)geofoam Limited surcharge loading Lateral earth pressure Model test Prediction
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading
10
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Commentary on"Speed and surface steepness affect internal tibial loading during running"
11
作者 Michael Baggaley Arash Khassetarash 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期125-126,共2页
It is a pleasure to write a commentary on the work of Dr.Hannah Rice and colleagues,l who have advanced our understanding of how the mechanical loading environment of the tibia changes as a function of running grade a... It is a pleasure to write a commentary on the work of Dr.Hannah Rice and colleagues,l who have advanced our understanding of how the mechanical loading environment of the tibia changes as a function of running grade and speed.It is important that we understand how the tibia is loaded during conditions that an individual is likely to encounter when running as it is these internal loads which we believe are responsible for the development of bone-stress injuries. 展开更多
关键词 loading INJURIES LIKELY
下载PDF
Evolution of molecular structure of TATB under shock loading from transient Raman spectroscopic technique
12
作者 Hongliang Kang Xue Yang +5 位作者 Wenshuo Yuan Lei Yang Xinghan Li Fusheng Liu Zhengtang Liu Qijun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the im... By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group. 展开更多
关键词 TATB Raman spectra Structural evolution Shock loading
下载PDF
Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading
13
作者 Jiajian Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期650-664,共15页
Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits su... Polypropylene(PP)fiber-reinforced cement-based tailings backfill(FRCTB)is a green compound material with superior crack resistance and has good prospects for application in underground mining.However,FRCTB exhibits susceptibility to dynamic events,such as impact ground pressure and blast vibrations.This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact,considering the height/diameter(H/D)effect.Split Hopkinson pressure bar,industrial computed tomography scan,and scanning electron microscopy(SEM)experiments were carried out on six types of FRCTB.Laboratory outcomes confirmed fiber aggregation at the bottom of specimens.When H/D was less than 0.8,the proportion of PP fibers distributed along theθangle direction of80°-90°increased.For the total energy,all samples presented similar energy absorption,reflectance,and transmittance.However,a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase.A positive correlation existed between the average strain rate and absorbed energy per unit volume.The increase in H/D resulted in a decreased crack volume fraction of FRCTB.When the H/D was greater than or equal to 0.7,the maximum crack volume fraction of FRCTB was observed close to the incidence plane.Radial cracks were present only in the FRCTB with an H/D ratio of 0.5.Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas.PP fibers can limit the emergence and expansion of cracks by influencing their path.SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB.Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces.These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill. 展开更多
关键词 cement-based tailings fiber-reinforced backfills FRACTURE energy absorption impact loading
下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading
14
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 Damage characteristics Constitutive model Fissured rocks Non-penetrating crack Cyclic loading
下载PDF
Comparison of microwave- and thermal-assisted rock fragmentation methods at different temperatures and loading rates
15
作者 Wei Yao Shuai Wang +2 位作者 Bangbiao Wu Ying Xu Kaiwen Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期799-819,共21页
Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,F... Understanding the effects of microwave irradiation and thermal treatment on the dynamic compression and fragmentation properties of rocks is essential to quantify energy consumption in rock engineering.In this study,Fangshan granite(FG)specimens were exposed to microwave irradiation and heat treatment.The damage of FG specimens induced by these two methods was compared using X-ray CT scanning and ultrasonic wave method.The temperatures of FG after microwave irradiation and thermal treatment were effectively evaluated using a newly proposed technique.A novelty method for precisely determining the geometric features of fragments is developed to estimate the fragmentation energy.Thus,the dynamic uniaxial compressive strength(UCS),the dynamic fragmentation characteristics,and the fragmentation energy of FG after these two pretreatment methods can be reasonably compared.The noticeable distinction of loading rate effect on the dynamic UCS of FG between these two pretreatment methods is first observed.A relationship is established between the dynamic UCS and the damage induced by microwave irradiation and heat treatment.Moreover,fragmentation energy fan analysis is introduced to accurately compare the fragmentation properties of FG after two pretreatment methods in dynamic compression tests. 展开更多
关键词 Fangshan granite Dynamic experiments Microwave irradiation Thermal treatment loading rate FRAGMENTATION
下载PDF
R-Factor Analysis of Data Based on Population Models Comprising R- and Q-Factors Leads to Biased Loading Estimates
16
作者 André Beauducel 《Open Journal of Statistics》 2024年第1期38-54,共17页
Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- a... Effects of performing an R-factor analysis of observed variables based on population models comprising R- and Q-factors were investigated. Although R-factor analysis of data based on a population model comprising R- and Q-factors is possible, this may lead to model error. Accordingly, loading estimates resulting from R-factor analysis of sample data drawn from a population based on a combination of R- and Q-factors will be biased. It was shown in a simulation study that a large amount of Q-factor variance induces an increase in the variation of R-factor loading estimates beyond the chance level. Tests of the multivariate kurtosis of observed variables are proposed as an indicator of possible Q-factor variance in observed variables as a prerequisite for R-factor analysis. 展开更多
关键词 R-Factor Analysis Q-Factor Analysis loading Bias Model Error Multivariate Kurtosis
下载PDF
Two-Stage IoT Computational Task Offloading Decision-Making in MEC with Request Holding and Dynamic Eviction
17
作者 Dayong Wang Kamalrulnizam Bin Abu Bakar Babangida Isyaku 《Computers, Materials & Continua》 SCIE EI 2024年第8期2065-2080,共16页
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support ... The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method. 展开更多
关键词 Decision making internet of things load prediction task offloading multi-access edge computing
下载PDF
Mechanical behavior of 2G NPR bolt anchored rock samples under static disturbance loading
18
作者 WANG Jiong JIANG Jian +4 位作者 WANG Siyu CHANG Yiwen LIU Peng HE Manchao CHENG Shuang 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2494-2516,共23页
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar... The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt. 展开更多
关键词 Anchored rock samples Static disturbance load Acoustic emission characteristics Digital speckle Negative Poisson's ratio
下载PDF
Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading
19
作者 Xinshan Zhuang Shunlei Xia Ruijie Pan 《Fluid Dynamics & Materials Processing》 EI 2024年第2期447-461,共15页
Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD... Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio. 展开更多
关键词 Geotechnical engineering CLAY cyclic loading nuclear magnetic resonance NaCl solution consolidation ratio accumulative strain
下载PDF
Stem cell technology for antitumor drug loading and delivery in oncology
20
作者 FRANCESCO PETRELLA ENRICO MARIO CASSINA +3 位作者 LIDIA LIBRETTI EMANUELE PIRONDINI FEDERICO RAVEGLIA ANTONIO TUORO 《Oncology Research》 SCIE 2024年第3期433-437,共5页
The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of... The main aim of antineoplastic treatment is to maximize patient benefit by augmenting the drug accumulation within affected organs and tissues,thus incrementing drug effects and,at the same time,reducing the damage of non-involved tissues to cytotoxic agents.Mesenchymal stromal cells(MSC)represent a group of undifferentiated multipotent cells presenting wide self-renewal features and the capacity to differentiate into an assortment of mesenchymal family cells.During the last year,they have been proposed as natural carriers for the selective release of antitumor drugs to malignant cll,s thus optimizing cytotoxic action on cancer cll,while significantly reducing adverse side efect on healthy cells.MSC chemotherapeutic drug loading and delivery is an encouraging new area of cell therapy for several tumors,especially for those with unsatisfactory prognosis and limited treatment options available.Although some experim ental models have been sucesfuly developed,phase I dinical studies are needed to confirm this potential application of cell therapy,in particular in the case of primary and secondary lung cancers. 展开更多
关键词 Mesenchymal stromal cell Drug loading Drug delivery MESOTHELIOMA Melanoma GLIOBLASTOMA Pancreatic ductal adenocarcinoma Multiple myeloma
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部