It is significant to develop a robot hand with high rigidity by a 6-DOF parallel manipulator(PM).However,the existing6-DOF PMs include spherical joint which has less capability of pulling force bearing,less rotation...It is significant to develop a robot hand with high rigidity by a 6-DOF parallel manipulator(PM).However,the existing6-DOF PMs include spherical joint which has less capability of pulling force bearing,less rotation range and lower precision under alternately heavy loads.A novel 6-DOF PM with three planar limbs and equipped with three fingers is proposed and its kinematics and statics are analyzed systematically.A 3-dimension simulation mechanism of the proposed manipulator is constructed and its structure characteristics is analyzed.The kinematics formulae for solving the displacement,velocity,acceleration of the platform,the active legs and the fingers are established.The statics formulae are derived for solving the active forces of PM and the finger mechanisms.An analytic example is given for solving the kinematics and statics of proposed manipulator and the analytic solved results are verified by the simulation mechanism.It is proved from the error analysis of analytic solutions and simulation solutions that the derived analytic formulae are correct and provide the theoretical and technical foundations for its manufacturing,control and application.展开更多
Hydrogen (H) defect interactions have been investigated by molecular statics sim- ulations in tungsten (W), including H-H interactions and interactions between H and W self- interstitial atoms. The interactions be...Hydrogen (H) defect interactions have been investigated by molecular statics sim- ulations in tungsten (W), including H-H interactions and interactions between H and W self- interstitial atoms. The interactions between H and small H-vacancy clusters are also demonstrated; the binding energies of an H, a vacancy and a self-interstitial W to an H-vacancy cluster depend on the H-to-vacancy ratio. We conclude that H bubble formation needs a high concentration of H in W for the H bubble nucleation and growth, which are also governed by the H-to-vacancy ratio of the cluster. The vacancy first combines with H atoms and a cluster forms, then the H-vacancy cluster goes through the whole process of vacancy capture, H capture, and vacancy capture again, and as a result the H-vacancy cluster grows larger and larger. Finally, the H bubble forms.展开更多
Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configu...Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configuration of the two-robot, and to find some restrictions of kinematics for the cooperation. Methods Multirobot cooperation theory is used in the whole study process. Inverse kinematics of the robot is used to form a desired configuration in the cooperation process. Static equations are established to analyze the relations between the friction factor, the configuration of robots and the maximum height of a stair. Kinematics analysis is used to find the restrictions of the two collaborative robots in position, velocity and acceleration. Results 3D simulation shows that the two cooperative robots can climb up a stair under the condition of a certain height and a certain friction factor between robot wheel and the surface of the stair. Following the restrictions of kinematics, the climbing mission is fulfilled successfully and smoothly. Conclusion The maximum height of a stair, which the two cooperative robots can climb up, is involved in the configuration of robots, friction factor between the stair and the robots. The most strict restriction of the friction factor does not appear in the horizontal position. In any case, the maximum height is smaller than half of the distance between the centroid of robot1 with the centroid of robot2. However, the height can be higher than the radius of one robot wheel, which profit from the collaboration.展开更多
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram...This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency.展开更多
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured...The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.展开更多
BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons comb...BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields t...Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields to not only increase muscle flexibility but also reduce stress. Additionally, conscious slower breathing (CSB) predominates parasympathetic activity, causing a relaxing effect. These results indicate that combining SST and CSB may be more useful in reducing stress. However, to the best of our knowledge, the effect of this combination remains unclear. Objective: This study aimed to elucidate the effects of the combination of SST and CSB on autonomic activity and stress in adult women. Methods: Eleven healthy Japanese adult female participants performed SST with nonconscious natural breathing for 20 min. The same participants performed SST in combination with CSB (2 s inspiratory and 4 s expiratory) for 20 min on another day. Salivary cortisol and chromogranin A levels were measured before and after stretching as stress markers of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. The coefficient of variation of the R-R interval (CVR-R) and high-frequency component (HF), which reflect parasympathetic nerve activity, and heart rate and low-frequency component (LF)/HF ratio, which reflect sympathetic nerve activity, were measured before, during, and after stretching. Results: SST decreased cortisol levels but with no significant changes in chromogranin A, heart rate, CVR-R, HF, or LF/HF ratio. The combination of SST and CSB increased CVR-R and HF levels in addition to decreasing cortisol levels but with no significant changes in chromogranin A, heart rate, or LF/HF levels. Conclusion: These results indicate that the combination of SST and CSB may increase parasympathetic activity and reduce stress. However, future randomized controlled trials with larger sample sizes should support this conclusion.展开更多
Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its d...Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance.展开更多
The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency di...The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant.展开更多
Hf-based carbides are highly desirable candidate materials for oxidizing environments above 2000℃.However,the static oxidation behavior at their potential service temperatures remains unclear.To fill this gap,the sta...Hf-based carbides are highly desirable candidate materials for oxidizing environments above 2000℃.However,the static oxidation behavior at their potential service temperatures remains unclear.To fill this gap,the static oxidation behavior of(Hf,Ti)C and the effect of Ti substitutions were investigated in air at 2500℃ under an oxygen partial pressure of 4.2 kPa.After oxidation for 2000 s,the thickness of the oxide layer on the surface of(Hf,Ti)C bulk ceramic is reduced by 62.29%compared with that on the HfC monocarbide surface.The dramatic improvement in oxidation resistance is attributed to the unique oxide layer structure consisting of various crystalline oxycarbides,HfO_(2),and carbon.The Ti-rich oxycarbide((Ti,Hf)C_(x)O_(y))dispersed within HfO_(2) formed the major structure of the oxide layer.A coherent boundary with lattice distortion existed at the HfO2/(Ti,Hf)C_(x)O_(y) interface along the(111)crystal plane direction,which served as an effective oxygen diffusion barrier.The Hfrich oxycarbide((Hf,Ti)CxOy)together with(Ti,Hf)C_(x)O_(y),HfO_(2),and precipitated carbon constituted a dense transition layer,ensuring favorable bonding between the oxide layer and the matrix.The Ti content affects the oxidation resistance of(Hf,Ti)C by determining the oxide layer's phase distribution and integrity.展开更多
Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacolog...Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses.展开更多
In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a ...In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.展开更多
The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only...The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses aurea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limitedand the distance between the urea aqueous solution injection position and the reactor is low;therefore, the staticmixer installed in this pipeline has special performance requirements. In particular, four evaluation indices areused in this study: The B value, C value, pressure loss correction factor (Z′), and the ratio of the required distanceto the equivalent diameter of the pipe (LV/D) when the velocity field after the mixer attains uniformity. Six typesof static mixers were simulated with varying concentrations, flow speeds, and positions. A fuzzy comprehensiveevaluation method was introduced to evaluate and compare the related advantages and disadvantages. The resultsshowed that 1) mixing performance was related to the shape of the mixer and had no direct relationship with flowvelocity. 2) For the same mixer position, the lower the urea concentration, the greater the difficulty of evenly mixing the solution. 3) At a constant urea concentration, the mixing performance improved when the mixer was closer to the injection inlet. 4) The installation of a GK mixer in the SCR system of a 9L20C diesel engine was best.展开更多
Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This ...Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This gives us the opportunity to test Dispersion Measure versus redshift predictions made by two models. The Macquart relation for an expanding Universe and the New Tired Light relationship in a static universe. In New Tired Light, redshifts are produced when a photon is absorbed and re-emitted by the electrons in the IGM which recoil on both occasions. Some of the energy of the photon has been transferred to the kinetic energy of the recoiling electron. The photon has less energy, a lower frequency and a longer wavelength. It has been redshifted. Since dispersion is due to an interaction between radio signals and these same electrons one would expect a direct relationship between DM and redshift in the New Tired light model. The relation is DM=(mec/2hre)ln(1+z)and contains no adjustable parameters—just a combination of universal constants related to the electron and photon. Notice that the relation is independent of the electron number density ne since a change in ne affects both the DM and redshift equally. A graph of DM versus ln(1 + z) will be a straight line of gradient (mec/2hre)and, using SI units, substituting for the constants gives 7.318 × 1025 m−2. Using the data from the 23 well localized FRB’s, with the weighting of the DM’s for expansion removed (so that the data corresponds to a static universe), a graph of DM versus ln(1 + z) has a gradient of 6.7 × 1025 m−2—9% below the predicted (mec/2hre). The Macquart relation involves highly processed data and adjustable parameters to allow for “dark energy” and “dark matter” (neither of which has yet been found) and can be reduced to DM = 850z (in units of pc∙cm−3). Using the data from this set of localized FRB’s gives a trendline with gradient 1.10 × 103 pc∙cm−3—almost 30% higher than that predicted in an expanding universe model. The FRB data clearly comes down in favour of a static universe rather than an expanding one. Combining the DM-z relationship for the 23 well localized FRB’s, with the Hubble diagram, drawn using the NED-D compilation of redshift independent extragalactic distances, produces a value of “ne” the mean electron number density of the IGM, of ne=0.48 m−3close to the value ne=0.5 m−3, long since predicted by NTL.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar...The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.展开更多
The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this stud...The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this study proposes an artificial emotional lazy Q-learning method,which combines artificial emotion,lazy learning,and reinforcement learning for static security and stability analysis of power systems.Moreover,this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,and improve the static security stability of the new type of power system more effectively than the traditional proportional-integral-differential control and Q-learning methods.展开更多
Designing a rock reinforcement element requires knowledge of:geomechanical behaviour,interaction of the reinforcement element with rock mass and the element’s mechanistic response in static and dynamic environments.U...Designing a rock reinforcement element requires knowledge of:geomechanical behaviour,interaction of the reinforcement element with rock mass and the element’s mechanistic response in static and dynamic environments.Using this knowledge the JTech bolt was developed and subjected to a thorough program to test,gather data and validate the bolt performance in varying domains.By conducting FE(finite element)modeling,the simulation reviews the JTech bolt design evaluating the effects of threadbar geometric variation,threadbar and nut engagement results under high stress,coating friction response and effects of thread tolerance extremes on the failure mode.These results determine safety factors,tolerances and quality management criteria.Once manufactured,in-situ system testing,laboratory and underground short encapsulation testing,resin mixing testing,double shear testing and dynamic testing at varying velocity and mass,determine the system’s capacity and effectiveness in static,quasi-static and dynamic mining environments.In this paper,the process and results are described.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51175447)Key Planned Project of Hebei Province,China(Grant No.11962127D)
文摘It is significant to develop a robot hand with high rigidity by a 6-DOF parallel manipulator(PM).However,the existing6-DOF PMs include spherical joint which has less capability of pulling force bearing,less rotation range and lower precision under alternately heavy loads.A novel 6-DOF PM with three planar limbs and equipped with three fingers is proposed and its kinematics and statics are analyzed systematically.A 3-dimension simulation mechanism of the proposed manipulator is constructed and its structure characteristics is analyzed.The kinematics formulae for solving the displacement,velocity,acceleration of the platform,the active legs and the fingers are established.The statics formulae are derived for solving the active forces of PM and the finger mechanisms.An analytic example is given for solving the kinematics and statics of proposed manipulator and the analytic solved results are verified by the simulation mechanism.It is proved from the error analysis of analytic solutions and simulation solutions that the derived analytic formulae are correct and provide the theoretical and technical foundations for its manufacturing,control and application.
基金supported by National Natural Science Foundation of China(Nos.51171008 and 11405201)the National Magnetic Confinement Fusion Program of China(No.2013GB1090)
文摘Hydrogen (H) defect interactions have been investigated by molecular statics sim- ulations in tungsten (W), including H-H interactions and interactions between H and W self- interstitial atoms. The interactions between H and small H-vacancy clusters are also demonstrated; the binding energies of an H, a vacancy and a self-interstitial W to an H-vacancy cluster depend on the H-to-vacancy ratio. We conclude that H bubble formation needs a high concentration of H in W for the H bubble nucleation and growth, which are also governed by the H-to-vacancy ratio of the cluster. The vacancy first combines with H atoms and a cluster forms, then the H-vacancy cluster goes through the whole process of vacancy capture, H capture, and vacancy capture again, and as a result the H-vacancy cluster grows larger and larger. Finally, the H bubble forms.
基金This workis supported in part by the Hi-tech Research and Development Programof China (2002AA422130) .
文摘Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configuration of the two-robot, and to find some restrictions of kinematics for the cooperation. Methods Multirobot cooperation theory is used in the whole study process. Inverse kinematics of the robot is used to form a desired configuration in the cooperation process. Static equations are established to analyze the relations between the friction factor, the configuration of robots and the maximum height of a stair. Kinematics analysis is used to find the restrictions of the two collaborative robots in position, velocity and acceleration. Results 3D simulation shows that the two cooperative robots can climb up a stair under the condition of a certain height and a certain friction factor between robot wheel and the surface of the stair. Following the restrictions of kinematics, the climbing mission is fulfilled successfully and smoothly. Conclusion The maximum height of a stair, which the two cooperative robots can climb up, is involved in the configuration of robots, friction factor between the stair and the robots. The most strict restriction of the friction factor does not appear in the horizontal position. In any case, the maximum height is smaller than half of the distance between the centroid of robot1 with the centroid of robot2. However, the height can be higher than the radius of one robot wheel, which profit from the collaboration.
基金supported by the National Natural Science Foundation of China(Nos.52074151,51927807,and 52274123)Tiandi Science and Technology Co.,Ltd.(No.2022-2-TDMS012)。
文摘This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency.
基金the financial support from the National Natural Science Foundation of China(Nos.52374094,52174122 and 52374218)Excellent Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150)。
文摘The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.
基金Supported by Hangzhou Medical and Health Technology Project,No.OO20191141。
文摘BACKGROUND Preschoolers become anxious when they are about to undergo anesthesia and surgery,warranting the development of more appropriate and effective interventions.AIM To explore the effect of static cartoons combined with dynamic virtual environments on preoperative anxiety and anesthesia induction compliance in preschool-aged children undergoing surgery.METHODS One hundred and sixteen preschool-aged children were selected and assigned to the drug(n=37),intervention(n=40),and control(n=39)groups.All the children received routine preoperative checkups and nursing before being transferred to the preoperative preparation room on the day of the operation.The drug group received 0.5 mg/kg midazolam and the intervention group treatment consisting of static cartoons combined with dynamic virtual environments.The control group received no intervention.The modified Yale Preoperative Anxiety Scale was used to evaluate the children’s anxiety level on the day before surgery(T0),before leaving the preoperative preparation room(T1),when entering the operating room(T2),and at anesthesia induction(T3).Compliance during anesthesia induction(T3)was evaluated using the Induction Compliance Checklist(ICC).Changes in mean arterial pressure(MAP),heart rate(HR),and respiratory rate(RR)were also recorded at each time point.RESULTS The anxiety scores of the three groups increased variously at T1 and T2.At T3,both the drug and intervention groups had similar anxiety scores,both of which were lower than those in the control group.At T1 and T2,MAP,HR,and RR of the three groups increased.The drug and control groups had significantly higher MAP and RR than the intervention group at T2.At T3,the MAP,HR,and RR of the drug group decreased and were significantly lower than those in the control group but were comparable to those in the intervention group.Both the drug and intervention groups had similar ICC scores and duration of anesthesia induction(T3),both of which were higher than those of the control group.CONCLUSION Combining static cartoons with dynamic virtual environments as effective as medication,specifically midazolam,in reducing preoperative anxiety and fear in preschool-aged children.This approach also improve their compliance during anesthesia induction and helped maintain their stable vital signs.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
文摘Background: Women are thought to be more susceptible to stress than men in a stressful society, and reducing stress is crucial for women to maintain their health. Static stretching (SST) is applied in various fields to not only increase muscle flexibility but also reduce stress. Additionally, conscious slower breathing (CSB) predominates parasympathetic activity, causing a relaxing effect. These results indicate that combining SST and CSB may be more useful in reducing stress. However, to the best of our knowledge, the effect of this combination remains unclear. Objective: This study aimed to elucidate the effects of the combination of SST and CSB on autonomic activity and stress in adult women. Methods: Eleven healthy Japanese adult female participants performed SST with nonconscious natural breathing for 20 min. The same participants performed SST in combination with CSB (2 s inspiratory and 4 s expiratory) for 20 min on another day. Salivary cortisol and chromogranin A levels were measured before and after stretching as stress markers of the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. The coefficient of variation of the R-R interval (CVR-R) and high-frequency component (HF), which reflect parasympathetic nerve activity, and heart rate and low-frequency component (LF)/HF ratio, which reflect sympathetic nerve activity, were measured before, during, and after stretching. Results: SST decreased cortisol levels but with no significant changes in chromogranin A, heart rate, CVR-R, HF, or LF/HF ratio. The combination of SST and CSB increased CVR-R and HF levels in addition to decreasing cortisol levels but with no significant changes in chromogranin A, heart rate, or LF/HF levels. Conclusion: These results indicate that the combination of SST and CSB may increase parasympathetic activity and reduce stress. However, future randomized controlled trials with larger sample sizes should support this conclusion.
基金supported by the National Natural Science Foundation of China(22078278)Hunan Innovative Talent Project(2022RC1111)+2 种基金Hunan Provincial Education Bureau Foundation(22A0131)Hunan Province Higher Education Key Laboratory of Green Catalysis and Industrial Reaction Process IntensificationFurong Plan Provincial Enterprise Technology Innovation and Entrepreneurship Team.
文摘Kenics static mixers(KSM)are extensively used in industrial mixing-reaction processes by virtue of high mixing efficiency,low power homogenization and easy continuous production.Resolving liquid droplet size and its distribution and thus revealing the dispersion characteristics are of great significance for structural optimization and process intensification in the KSM.In this work,a computational fluid dynamics-population balance model(CFD-PBM)coupled method is employed to systematically investigate the effects of operating conditions and structural parameters of KSM on droplet size and its distribution,to further reveal the liquid-liquid dispersion characteristics.Results indicate that higher Reynolds numbers or higher dispersed phase volume fractions increase energy dissipation,reducing Sauter mean diameter(SMD)of dispersed phase droplets and with a shift in droplet size distribution(DSD)towards smaller size.Smaller aspect ratios,greater blade twist and assembly angles amplify shear rate,leading to smaller droplet size and a narrower DSD in the smaller range.The degree of impact exerted by the aspect ratio is notably greater.Notably,mixing elements with different spin enhance shear and stretching efficiency.Compared to the same spin,SMD becomes 3.7-5.8 times smaller in the smaller size range with a significantly narrower distribution.Taking into account the pressure drop and efficiency in a comprehensive manner,optimized structural parameters for the mixing element encompass an aspect ratio of 1-1.5,a blade twist angle of 180°,an assembly angle of 90°,and interlaced assembly of adjacent elements with different spin.This work provides vital theoretical underpinning and future reference for enhancing KSM performance.
基金Projects(51925402,52334005,52304094)supported by the National Natural Science Foundation of ChinaProject(20201102004)supported by the Shanxi Science and Technology Major Project,China。
文摘The mechanical properties of residual coal pillars under the influence of upward mining disturbances significantly affect the safety of residual mining activities on working faces.This study conducted low-frequency disturbance dynamic uniaxial compression tests on coal specimens using a self-developed dynamic-static load coupling electro-hydraulic servo system,and studied the strength evolutions,surface deformations,acoustic emission(AE)characteristic parameters,and the failure modes of coal specimens with different static preloading levels were studied.The disturbance damage is positively correlated with the coal specimen static preload level.Specifically,the cumulative AE count rates of the initial accelerated damage stage for the coal specimens with static preloading level of 60%and 70%of the uniaxial compressive strength(UCS)were 2.66 and 3.19 times that of the 50%UCS specimens,respectively.Macroscopically,this behaviour manifested as a decrease in the compressive strength,and the mean strengths of the disturbance-damaged coal specimens with 60%and 70%of UCS static preloading decreased by 8.53%and 9.32%,respectively,compared to those of the specimens under pure static loading.The crack sources,such as the primary fissures,strongly control the dynamic response of the coal specimen.The difference between the dynamic responses of the coal specimens and that of dense rocks is significant.
基金This work was supported by the National Natural Science Foundation of China grant numbers[52072410].
文摘Hf-based carbides are highly desirable candidate materials for oxidizing environments above 2000℃.However,the static oxidation behavior at their potential service temperatures remains unclear.To fill this gap,the static oxidation behavior of(Hf,Ti)C and the effect of Ti substitutions were investigated in air at 2500℃ under an oxygen partial pressure of 4.2 kPa.After oxidation for 2000 s,the thickness of the oxide layer on the surface of(Hf,Ti)C bulk ceramic is reduced by 62.29%compared with that on the HfC monocarbide surface.The dramatic improvement in oxidation resistance is attributed to the unique oxide layer structure consisting of various crystalline oxycarbides,HfO_(2),and carbon.The Ti-rich oxycarbide((Ti,Hf)C_(x)O_(y))dispersed within HfO_(2) formed the major structure of the oxide layer.A coherent boundary with lattice distortion existed at the HfO2/(Ti,Hf)C_(x)O_(y) interface along the(111)crystal plane direction,which served as an effective oxygen diffusion barrier.The Hfrich oxycarbide((Hf,Ti)CxOy)together with(Ti,Hf)C_(x)O_(y),HfO_(2),and precipitated carbon constituted a dense transition layer,ensuring favorable bonding between the oxide layer and the matrix.The Ti content affects the oxidation resistance of(Hf,Ti)C by determining the oxide layer's phase distribution and integrity.
基金supported by the National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+5 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Anhui Provincial Natural Science Foundation(2308085QE183,2308085QE181)CASHIPS Director’s Fund(YZJJ2024QN44,YZJJ2023QN43)Heye Health Technology Chong Ming Project(HYCMP2021010)China Post-doctoral Science Foundation(2023M743536)Science Research Fund for Postdoctoral in Anhui Province(2023B669)。
文摘Acetaminophen(APAP),the most frequently used mild analgesic and antipyretic drug worldwide,is implicated in causing 46%of all acute liver failures in the USA and between 40%and 70%in Europe.The predominant pharmacological intervention approved for mitigating such overdose is the antioxidant N-acetylcysteine(NAC);however,its efficacy is limited in cases of advanced liver injury or when administered at a late stage.In the current study,we discovered that treatment with a moderate intensity static magnetic field(SMF)notably reduced the mortality rate in mice subjected to high-dose APAP from 40%to 0%,proving effective at both the initial liver injury stage and the subsequent recovery stage.During the early phase of liver injury,SMF markedly reduced APAPinduced oxidative stress,free radicals,and liver damage,resulting in a reduction in multiple oxidative stress markers and an increase in the antioxidant glutathione(GSH).During the later stage of liver recovery,application of vertically downward SMF increased DNA synthesis and hepatocyte proliferation.Moreover,the combination of NAC and SMF significantly mitigated liver damage induced by high-dose APAP and increased liver recovery,even 24 h post overdose,when the effectiveness of NAC alone substantially declines.Overall,this study provides a noninvasive non-pharmaceutical tool that offers dual benefits in the injury and repair stages following APAP overdose.Of note,this tool can work as an alternative to or in combination with NAC to prevent or minimize liver damage induced by APAP,and potentially other toxic overdoses.
基金funded by the National Natural Science Foundation of China(52222704 and 52177107).
文摘In an integrated electricity-gas system(IEGS),load fluctuations affect not only the voltage in the power system but also the gas pressure in the natural gas system.The static voltage stability region(SVSR)method is a tool for analyzing the overall static voltage stability in a power system.However,in an IEGS,the SVSR boundary may be overly optimistic because the gas pressure may collapse before the voltage collapses.Thus,the SVSR method cannot be directly applied to an IEGS.In this paper,the concept of the SVSR is extended to the IEGS-static stability region(SSR)while considering voltage and gas pressure.First,criteria for static gas pressure stability in a natural gas system are proposed,based on the static voltage stability criteria in a power system.Then,the IEGS-SSR is defined as a set of active power injections that satisfies multi-energy flow(MEF)equations and static voltage and gas pressure stability constraints in the active power injection space of natural gas-fired generator units(NGUs).To determine the IEGSSSR,a continuation MEF(CMEF)method is employed to trace the boundary point in one specific NGU scheduling direction.A multidimensional hyperplane sampling method is also proposed to sample the NGU scheduling directions evenly.The obtained boundary points are further used to form the IEGSSSR in three-dimensional(3D)space via a Delaunay triangulation hypersurface fitting method.Finally,the numerical results of typical case studies are presented to demonstrate that the proposed method can effectively form the IEGS-SSR,providing a tool for IEGS online monitoring and dispatching.
基金wasfinancially aided by the National Natural Science Foundation of China(52276122).
文摘The proper selection of a relevant mixer generally requires an effective assessment of several models against theapplication requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses aurea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limitedand the distance between the urea aqueous solution injection position and the reactor is low;therefore, the staticmixer installed in this pipeline has special performance requirements. In particular, four evaluation indices areused in this study: The B value, C value, pressure loss correction factor (Z′), and the ratio of the required distanceto the equivalent diameter of the pipe (LV/D) when the velocity field after the mixer attains uniformity. Six typesof static mixers were simulated with varying concentrations, flow speeds, and positions. A fuzzy comprehensiveevaluation method was introduced to evaluate and compare the related advantages and disadvantages. The resultsshowed that 1) mixing performance was related to the shape of the mixer and had no direct relationship with flowvelocity. 2) For the same mixer position, the lower the urea concentration, the greater the difficulty of evenly mixing the solution. 3) At a constant urea concentration, the mixing performance improved when the mixer was closer to the injection inlet. 4) The installation of a GK mixer in the SCR system of a 9L20C diesel engine was best.
文摘Fast Radio Bursts from far away galaxies have travelled through the IGM and provide a tool to study its composition. Presently there are 23 FRB’s whose host galaxies have been identified and the redshift found. This gives us the opportunity to test Dispersion Measure versus redshift predictions made by two models. The Macquart relation for an expanding Universe and the New Tired Light relationship in a static universe. In New Tired Light, redshifts are produced when a photon is absorbed and re-emitted by the electrons in the IGM which recoil on both occasions. Some of the energy of the photon has been transferred to the kinetic energy of the recoiling electron. The photon has less energy, a lower frequency and a longer wavelength. It has been redshifted. Since dispersion is due to an interaction between radio signals and these same electrons one would expect a direct relationship between DM and redshift in the New Tired light model. The relation is DM=(mec/2hre)ln(1+z)and contains no adjustable parameters—just a combination of universal constants related to the electron and photon. Notice that the relation is independent of the electron number density ne since a change in ne affects both the DM and redshift equally. A graph of DM versus ln(1 + z) will be a straight line of gradient (mec/2hre)and, using SI units, substituting for the constants gives 7.318 × 1025 m−2. Using the data from the 23 well localized FRB’s, with the weighting of the DM’s for expansion removed (so that the data corresponds to a static universe), a graph of DM versus ln(1 + z) has a gradient of 6.7 × 1025 m−2—9% below the predicted (mec/2hre). The Macquart relation involves highly processed data and adjustable parameters to allow for “dark energy” and “dark matter” (neither of which has yet been found) and can be reduced to DM = 850z (in units of pc∙cm−3). Using the data from this set of localized FRB’s gives a trendline with gradient 1.10 × 103 pc∙cm−3—almost 30% higher than that predicted in an expanding universe model. The FRB data clearly comes down in favour of a static universe rather than an expanding one. Combining the DM-z relationship for the 23 well localized FRB’s, with the Hubble diagram, drawn using the NED-D compilation of redshift independent extragalactic distances, produces a value of “ne” the mean electron number density of the IGM, of ne=0.48 m−3close to the value ne=0.5 m−3, long since predicted by NTL.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
基金provided by the National Natural Science Foundation of China(52074300)the Program of China Scholarship Council(202206430024)+2 种基金the National Natural Science Foundation of China Youth Science(52104139)Yueqi Young Scholars Project of China University of Mining and Technology Beijing(2602021RC84)Guizhou province science and technology planning project([2020]3007,[2020]3008)。
文摘The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt.
基金the Technology Project of China Southern Power Grid Digital Grid Research Institute Corporation,Ltd.(670000KK52220003)the National Key R&D Program of China(2020YFB0906000).
文摘The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this study proposes an artificial emotional lazy Q-learning method,which combines artificial emotion,lazy learning,and reinforcement learning for static security and stability analysis of power systems.Moreover,this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,and improve the static security stability of the new type of power system more effectively than the traditional proportional-integral-differential control and Q-learning methods.
文摘Designing a rock reinforcement element requires knowledge of:geomechanical behaviour,interaction of the reinforcement element with rock mass and the element’s mechanistic response in static and dynamic environments.Using this knowledge the JTech bolt was developed and subjected to a thorough program to test,gather data and validate the bolt performance in varying domains.By conducting FE(finite element)modeling,the simulation reviews the JTech bolt design evaluating the effects of threadbar geometric variation,threadbar and nut engagement results under high stress,coating friction response and effects of thread tolerance extremes on the failure mode.These results determine safety factors,tolerances and quality management criteria.Once manufactured,in-situ system testing,laboratory and underground short encapsulation testing,resin mixing testing,double shear testing and dynamic testing at varying velocity and mass,determine the system’s capacity and effectiveness in static,quasi-static and dynamic mining environments.In this paper,the process and results are described.