This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the a...Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.展开更多
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d...A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.展开更多
A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the...A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.展开更多
A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used t...A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used to locate damage in the structure, and an iterative estimation scheme for solving nonlinear optimization programming problems based on the quadratic programming technique is used to identify the damage magnitude. A numerical example of a cantilever beam with single or multiple damages is used to examine the capability of the proposed grey-theory-based method to localize and identify damages. The factors of meas-urement noise and incomplete test data are also discussed. The numerical results showed that the damage in the structure can be localized correctly through using the grey-related coefficient of displacement curvature, and the damage magnitude can be iden-tified with a high degree of accuracy, regardless of the number of measured displacement nodes. This proposed method only requires limited static test data, which is easily available in practice, and has wide applications in structural damage detection.展开更多
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati...As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.展开更多
Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the...Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.展开更多
In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal ...In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.展开更多
Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural facto...Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural factors,which tend to affect the safety and shorten the service life of these bridges.Assessing the overall state and performance of highway bridges is therefore a key element.Static load test,which is a type of sustainable detection experiment,has many advantages,including low cost,high efficiency,and high accuracy.In this paper,the bridge structure is analyzed through the application of theoretical calculations and relevant comparisons,so as to judge the operating state of the bridge.展开更多
The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
The quality of the continuous rigid-frame railway bridge is related to the safety of train operation,so it is necessary to test its stiffness,strength,and other indicators.Static load test is a common technique for br...The quality of the continuous rigid-frame railway bridge is related to the safety of train operation,so it is necessary to test its stiffness,strength,and other indicators.Static load test is a common technique for bridge inspection.This article summarizes the purpose of the static load test for a continuous rigid-frame railway bridge,including the required equipment,operation methods,etc.,and lists examples to analyze the operation process and precautions of static load test,hoping to provide reference information for relevant personnel.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the ...In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the length of the sleeve tube,thus preventing the surrounding rock from continuing to deform.Moreover,this bolt has a simple structure and is easy to manufacture and assemble.Then the static tensile test is conducted on the bolt specimen to test its working performance.The test results show that when the cone angle of the cone block is small,the load–displacement curve of the bolt contains three stages;when the cone angle is large,the load–displacement curve contains only two stages.Meanwhile,both the average constant resistance and the maximum absorbed energy increase linearly with the increase of cone angle.On this basis,ignoring the influence of shear stress,and it is supposed that the thickness of the sleeve tube is constant,then the theoretical calculation formula of constant resistance for the new bolt is derived,and the rationality of the formula is verified using the static tensile test results.It is found that the error of the calculated result is less than 15%when the cone angle does not exceed 15.At last,the numerical simulation method is used to analyze the performance of the new bolt.The simulation results indicate that the generation of shear stress and the change of tube thickness during the movement of the cone block are two important factors that cause theoretical errors.展开更多
In order to develop skin artefact for an octopus-inspired robot arm, which is designed to be able to elongate 60% of its original length, silicone nlbber and knitted nylon sheet were selected to manufacture an artific...In order to develop skin artefact for an octopus-inspired robot arm, which is designed to be able to elongate 60% of its original length, silicone nlbber and knitted nylon sheet were selected to manufacture an artificial skin, due to their higher elastic strain and high flexibility. Tensile and scissors cutting tests were conducted to characterise the matrix and reinforcing materials and the skin artefact. Material properties of the individual and the composite materials were compared with the measured properties of real octopus skin presented ill Part I. The Young's modulus of the skin should be below 20 MPa and the elastic strain range should be over 60%. The fracture toughness should be at least 0.9 kJ.m 2. Tubes made of the skin artefact filled with liquid were tested to study volume change under deformation. Finite element analysis model was developed to simulate the material and arm structure under tensile loading. Results show that the skin artefact developed has similar mechanical properties as the real octopus skin and satisfies all the design specifications of the OCTOPUS robot.展开更多
This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities ...This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.展开更多
In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the...In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.展开更多
Metallic corrosion is a serious problem in the application of a hygroscopic inorganic dust-depressor. The basic characteristics of a hygroscopic inorganic dust-depressor and its corrosivity, corrosion mechanism, as we...Metallic corrosion is a serious problem in the application of a hygroscopic inorganic dust-depressor. The basic characteristics of a hygroscopic inorganic dust-depressor and its corrosivity, corrosion mechanism, as well as the principle of corrosion inhibition were analyzed. The static mass-loss test was carried out to investigate the corrosion behavior and the effect of the dust-depressor. The static corrosion rates of steel specimens were measured in six different corrosion inhibitor solutions of the dust-depressor, and the suitable corrosion inhibitors for the dust-depressor to reduce the corrosivity were found out.展开更多
Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poi...Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.展开更多
Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Gro...Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.展开更多
In order to verify the influence of different block proportions S/B on the effect of SBS modified asphalt,the dynamic mechanical performance test and static loading test were performed on the samples composed of diffe...In order to verify the influence of different block proportions S/B on the effect of SBS modified asphalt,the dynamic mechanical performance test and static loading test were performed on the samples composed of different kinds of SBS with base asphalt. It is found that different S/B values fix on different modified effects and different viscoelastic mechanical behaviors,due to biphasic separate fabric of polybutadiene and polystyrene in SBS. In low-speed running pavement,the modified asphalt with lower S/B value shows better pavement performance,while in high-speed running pavement,the modified asphalt with higher S/B value shows better pavement performance. As far as SBS modified asphalt itself is concerned,mixing proportion impacts on resisting displacement and block proportion S/B ratio impacts on strain recovery capacity. In the case that the conditions are the same,SBS modified asphalt with different S/B values can be used for different travelling speed pavement construction demands to get an intelligent use.展开更多
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
文摘Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.
基金supported by National Key Research and Development Program(2016YFC0600901)the National Natural Science Foundation of China(Grant Nos.51374214,51134005 and 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining&Technology,Beijing(Grant Nos.2009QL03)the State Scholarship Fund of China
文摘A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.
基金Project(51078330) supported by the National Natural Science Foundation of ChinaProject(2012MS21339) supported by China Postdoctoral Science FoundationProject(2012GN012) supported by the Independent Innovation Foundation of Shandong University, China
文摘A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.
基金Project supported by the Natural Science Foundation of China(No. 50378041) and the Specialized Research Fund for the Doc-toral Program of Higher Education (No. 20030487016), China
文摘A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used to locate damage in the structure, and an iterative estimation scheme for solving nonlinear optimization programming problems based on the quadratic programming technique is used to identify the damage magnitude. A numerical example of a cantilever beam with single or multiple damages is used to examine the capability of the proposed grey-theory-based method to localize and identify damages. The factors of meas-urement noise and incomplete test data are also discussed. The numerical results showed that the damage in the structure can be localized correctly through using the grey-related coefficient of displacement curvature, and the damage magnitude can be iden-tified with a high degree of accuracy, regardless of the number of measured displacement nodes. This proposed method only requires limited static test data, which is easily available in practice, and has wide applications in structural damage detection.
文摘As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.
基金Supported by the National Natural Science Foundation of China (50908048)the Priority Academic Program Development (PAPD) Project of JiangsuHigher Education Institutions
文摘Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.
基金This research was sponsored by the Science and Technology Project for Policy Guidance of Jiangsu Province(SZ-LYG 2020016).
文摘In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.
文摘Highway bridges are an important part of the transportation industry and can promote social economic construction and development.In actual operation,highway bridges are often damaged due to overload and natural factors,which tend to affect the safety and shorten the service life of these bridges.Assessing the overall state and performance of highway bridges is therefore a key element.Static load test,which is a type of sustainable detection experiment,has many advantages,including low cost,high efficiency,and high accuracy.In this paper,the bridge structure is analyzed through the application of theoretical calculations and relevant comparisons,so as to judge the operating state of the bridge.
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
文摘The quality of the continuous rigid-frame railway bridge is related to the safety of train operation,so it is necessary to test its stiffness,strength,and other indicators.Static load test is a common technique for bridge inspection.This article summarizes the purpose of the static load test for a continuous rigid-frame railway bridge,including the required equipment,operation methods,etc.,and lists examples to analyze the operation process and precautions of static load test,hoping to provide reference information for relevant personnel.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金The paper is supported by the National Natural Science Foundation of China(Nos.52178393 and 52178354)the Housing and Urban-Rural Construction Science and Technology Planning Project of Shaanxi Province(No.2019-K39)the Innovation Capability Support Plan of Shaanxi-Innovation Team(No.2020TD-005).
文摘In order to control the large deformation of tunnel surrounding rock,a new energy-absorbing bolt is developed.This bolt can be transformed into a rigid support when the deformation of the surrounding rock reaches the length of the sleeve tube,thus preventing the surrounding rock from continuing to deform.Moreover,this bolt has a simple structure and is easy to manufacture and assemble.Then the static tensile test is conducted on the bolt specimen to test its working performance.The test results show that when the cone angle of the cone block is small,the load–displacement curve of the bolt contains three stages;when the cone angle is large,the load–displacement curve contains only two stages.Meanwhile,both the average constant resistance and the maximum absorbed energy increase linearly with the increase of cone angle.On this basis,ignoring the influence of shear stress,and it is supposed that the thickness of the sleeve tube is constant,then the theoretical calculation formula of constant resistance for the new bolt is derived,and the rationality of the formula is verified using the static tensile test results.It is found that the error of the calculated result is less than 15%when the cone angle does not exceed 15.At last,the numerical simulation method is used to analyze the performance of the new bolt.The simulation results indicate that the generation of shear stress and the change of tube thickness during the movement of the cone block are two important factors that cause theoretical errors.
文摘In order to develop skin artefact for an octopus-inspired robot arm, which is designed to be able to elongate 60% of its original length, silicone nlbber and knitted nylon sheet were selected to manufacture an artificial skin, due to their higher elastic strain and high flexibility. Tensile and scissors cutting tests were conducted to characterise the matrix and reinforcing materials and the skin artefact. Material properties of the individual and the composite materials were compared with the measured properties of real octopus skin presented ill Part I. The Young's modulus of the skin should be below 20 MPa and the elastic strain range should be over 60%. The fracture toughness should be at least 0.9 kJ.m 2. Tubes made of the skin artefact filled with liquid were tested to study volume change under deformation. Finite element analysis model was developed to simulate the material and arm structure under tensile loading. Results show that the skin artefact developed has similar mechanical properties as the real octopus skin and satisfies all the design specifications of the OCTOPUS robot.
基金Natural Science Foundation of China under Grant No.51278104
文摘This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.
基金financial support provided by the National Key Technology R&D Program during the 11th Five-Year Period (No. 2006BAK03B05)the National Natural Science Foundation of China (Nos.50534090, 50674090 and 50804047)+1 种基金the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety, China University of Mining and Technology (Nos.08KF14 and SKLCRSM09X04)the Scien-tific Research Foundation of China University of Mining & Technology (No.2007A001)
文摘In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.
文摘Metallic corrosion is a serious problem in the application of a hygroscopic inorganic dust-depressor. The basic characteristics of a hygroscopic inorganic dust-depressor and its corrosivity, corrosion mechanism, as well as the principle of corrosion inhibition were analyzed. The static mass-loss test was carried out to investigate the corrosion behavior and the effect of the dust-depressor. The static corrosion rates of steel specimens were measured in six different corrosion inhibitor solutions of the dust-depressor, and the suitable corrosion inhibitors for the dust-depressor to reduce the corrosivity were found out.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Second Tibetan Plateau Scientific Expedition and Research Grant 2019QZKK0708。
文摘Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable.
基金Science and Technology Innovation Program of Hunan Province(No.2021RC4037)National Natural Science Foundation of China:Deformation Monitoring Key Technology and Damage Mechanism Research on Data Fusion among GB-SAR and Multi-sensors(No.41877283)Scientific Research Project of Hunan Provincial Department of Natural Resources(No.2021-18)
文摘Bridge deformation monitoring usually adopts contact sensors,and the implementation process is often limited by the environment and observation conditions,resulting in unsatisfactory monitoring accuracy and effect.Ground-Based Synthetic Aperture Radar(GBSAR)combined with corner reflectors was used to perform static load-loaded deformation destruction experiments on solid model bridges in a non-contact manner.The semi parametric spline filtering and its optimization method were used to obtain the monitoring results of the GBSAR radar’s line of sight deformation,and the relative position of the corner reflector and the millimeter level deformation signals under different loading conditions were successfully extracted.The deformation transformation model from the radar line of sight direction to the vertical vibration direction was deduced.The transformation results of deformation monitoring and the measurement data such as the dial indicator were compared and analyzed.The occurrence and development process of bridge deformation and failure were successfully monitored,and the deformation characteristics of the bridge from continuous loading to eccentric loading until bridge failure were obtained.The experimental results show that GBSAR combined with corner reflector can be used for deformation feature acquisition,damage identification and health monitoring of bridges and other structures,and can provide a useful reference for design,construction and safety evaluation.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50008005)
文摘In order to verify the influence of different block proportions S/B on the effect of SBS modified asphalt,the dynamic mechanical performance test and static loading test were performed on the samples composed of different kinds of SBS with base asphalt. It is found that different S/B values fix on different modified effects and different viscoelastic mechanical behaviors,due to biphasic separate fabric of polybutadiene and polystyrene in SBS. In low-speed running pavement,the modified asphalt with lower S/B value shows better pavement performance,while in high-speed running pavement,the modified asphalt with higher S/B value shows better pavement performance. As far as SBS modified asphalt itself is concerned,mixing proportion impacts on resisting displacement and block proportion S/B ratio impacts on strain recovery capacity. In the case that the conditions are the same,SBS modified asphalt with different S/B values can be used for different travelling speed pavement construction demands to get an intelligent use.