The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s...To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.展开更多
This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrate...This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.展开更多
In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaini...In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.展开更多
This article presents a comprehensive framework for determining the location of road weather information system (RWIS) stations over a regional road network. In the proposed methodology, the region is divided into a...This article presents a comprehensive framework for determining the location of road weather information system (RWIS) stations over a regional road network. In the proposed methodology, the region is divided into a grid of equal-sized zones which are considered as the minimum spatial unit for allocating a candidate set of RWIS stations. These zones are ranked according to a set of pre-specified criteria that reflect the needs for, and potential benefits from, real-time RWIS, including road surface temperature variability, precipitation, network traffic, and collision patterns. A case study based on the existing RWIS network in the province of Ontario was conducted to illustrate the major features of the proposed method and evaluate the implications of alternative loca- tion selection criteria. The findings of the study suggest that it is feasible to develop a systematic process for locating RWIS stations using an integrated location criterion to capture multiple factors being considered in prac- tice. The study has also revealed the need to establish quantitative models for estimating the benefit of real-time information from RWIS stations, which is the foundation of a cost-benefit-based RWIS location optimization model.展开更多
For the charging station construction of electric vehicle,location selecting is a key issue.There are two problems in location selection of the electric vehicle charging station.One is determining the location of char...For the charging station construction of electric vehicle,location selecting is a key issue.There are two problems in location selection of the electric vehicle charging station.One is determining the location of charging station;the other is evaluating the location of charging station.To determine the charging station location,an spatial clustering algorithm is proposed and programmed.The example simulation shows the effectiveness of the spatial clustering algorithm.To evaluate the charging station location,a multi-hierarchical fuzzy method is proposed.Based on the location factors of electric vehicle charging station,the hierarchical evaluation structure of electric vehicle charging station location is constructed,including three levels,4first-class factors and 14second-class factors.The fuzzy multi-hierarchical evaluation model and algorithm are built.The analysis results show that the multi-hierarchical fuzzy method can reasonably complete the electric vehicle charging station location evaluation.展开更多
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision usi...Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.展开更多
The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-pla...The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-planning model to minimize construction and operation costs,user costs,and user satisfaction-related penalty costs.We designed an improved genetic algorithm that changes the crossover rate using the fitness value,memorizes,and transfers excellent genes.In addition,the present model addresses the problem of“premature convergence”in conventional genetic algorithms.A simulated example revealed that our proposed model could provide a basis for optimized location planning of charging/battery-swapping facilities at different levels under different charging modes with an improved computing efficiency.The example also proved that meeting more demand for power supply of electric vehicles does not necessarily mean increasing the sites of charging/battery-swap stations.Instead,optimizing the level and location planning of charging/battery-swap stations can maximize the investment profit.The proposed model can provide a reference for the government and enterprises to better plan the location of charging/battery-swap facilities.Hence,it is of both theoretical and practical value.展开更多
Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles ha...Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles have the advantages of zero emissions, low noise, and low vibration, thus avoiding exhaust pollution and providing a more comfortable working environment for operators. In order to achieve the goals of “peaking carbon emissions by 2030 and achieving carbon neutrality by 2060”, the use of environmentally friendly autonomous material handling vehicles for material transportation is an inevitable trend. To maximize the amount of transported materials, consider peak-to-valley electricity pricing, battery pack procurement, and the construction of charging and swapping stations while achieving “minimum daily transportation volume” and “lowest investment and operational cost over a 3-year settlement period” with the shortest overall travel distance for all material handling vehicles, this paper examines two different scenarios and establishes goal programming models. The appropriate locations for material handling vehicle swapping stations and vehicle battery pack scheduling schemes are then developed using the NSGA-II algorithm and ant colony optimization algorithm. The results show that, while ensuring a daily transportation volume of no less than 300 vehicles, the lowest investment and operational cost over a 3-year settlement period is approximately 24.1 million Yuan. The material handling vehicles follow the shortest path of 119.2653 km passing through the designated retrieval points and have two shortest routes. Furthermore, the advantages and disadvantages of the proposed models are analyzed, followed by an evaluation, deepening, and potential extension of the models. Finally, future research directions in this field are suggested.展开更多
China has mobile phone penetration rate of over 96.2%.Mobile phone has become the largest Internet terminal for Chinese Internet users.Population geographic distribution in earthquake zones can be got based on mobile ...China has mobile phone penetration rate of over 96.2%.Mobile phone has become the largest Internet terminal for Chinese Internet users.Population geographic distribution in earthquake zones can be got based on mobile phone positioning and map matching.For reducing earthquake black-box stage,we propose a real-time collection,correction and schedule algorithm of population position data by four stream processing environments(Redis,Hbase,Kafka,and Spark Streaming)in this paper.For labeling precisely population geographic distribution on the network map,matching of population geographic coordinates and map coordinates are optimized by sample comparison based on location data of mobile communication base stations and prefecture level cities.The test result shows the proposed system is high efficient and can rapidly respond to any emerging parallel tasks during the earthquake.A high-precision heat map of affected population can be produced and published on-line within 2 min after the devastating earthquake happened.展开更多
A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communic...A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation fiel...In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.展开更多
Microseismic source location is crucial for the early warning of rockburst risks.However,the conventional methods face challenges in terms of the microseismic wave velocity and arrival time accuracy.Intelligent techni...Microseismic source location is crucial for the early warning of rockburst risks.However,the conventional methods face challenges in terms of the microseismic wave velocity and arrival time accuracy.Intelligent techniques,such as the full convolutional neural network(FCNN),can capture spatial information but struggle with complex microseismic sequence.Combining the FCNN with the long shortterm memory(LSTM)network enables better time-series signal classification by integrating multiscale information and is therefore suitable for waveform location.The LSTM-FCNN model does not require extensive data preprocessing and it simplifies the microseismic source location through feature extraction.In this study,we utilized the LSTM-FCNN as a regression learning model to locate the seismic focus.Initially,the method of short-time-average/long-time-average(STA/LTA)arrival time picking was employed to augment spatiotemporal information.Subsequently,oversampling the on-site data was performed to address the issue of data imbalance,and finally,the performance of LSTM-FCNN was tested.Meanwhile,we compared the LSTM-FCNN model with previous deep-learning models.Our results demonstrated remarkable location capabilities with a mean absolute error(MAE)of only 7.16 m.The model can realize swift training and high accuracy,thereby significantly improving risk warning of rockbursts.展开更多
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre...When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material.展开更多
In centralized cellular network architecture,the concept of virtualized Base Station(VBS) becomes attracting since it enables all base stations(BSs) to share computing resources in a dynamic manner. This can significa...In centralized cellular network architecture,the concept of virtualized Base Station(VBS) becomes attracting since it enables all base stations(BSs) to share computing resources in a dynamic manner. This can significantly improve the utilization efficiency of computing resources. In this paper,we study the computing resource allocation strategy for one VBS by considering the non-negligible effect of delay introduced by switches. Specifically,we formulate the VBS's sum computing rate maximization as a set optimization problem. To address this problem,we firstly propose a computing resource schedule algorithm,namely,weight before one-step-greedy(WBOSG),which has linear computation complexity and considerable performance. Then,OSG retreat(OSG-R) algorithm is developed to further improve the system performance at the expense of computational complexity. Simulation results under practical setting are provided to validate the proposed two algorithms.展开更多
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o...To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.展开更多
The present paper describes the implementation of GPR 3D survey for detecting and delineating possible remain<span style="font-family:"">s</span><span style="font-family:""...The present paper describes the implementation of GPR 3D survey for detecting and delineating possible remain<span style="font-family:"">s</span><span style="font-family:""> of hydrocarbon plumes on a gas station. The 3D-imaging was used for the detection of anomalous zones that were analyzed with some relevant signal attributes extracted by digital signal processing. These signal attributes or parameters ha</span><span style="font-family:"">ve</span><span style="font-family:""> been the frequency of the maximum energy concentration on time-frequency distribution and instantaneous amplitude that could be related </span><span style="font-family:"">to</span><span style="font-family:""> the local response of the electromagnetic interaction and the presence of hydrocarbon plumes or soil contaminated area</span><span style="font-family:"">s</span><span style="font-family:"">. The implementation methodology took place at a gas station monitored with a piezometric sensor installation with soil layer information. The 3D-imaging of processed data and its slicing tool permits visualizing expected targets as pipes, tanks and installations in the subsoil exposing the anomalous zones for refined analyses. This further processing has used some spectral attributes of the signal to assess the real presence of the total petroleum hydrocarbons (TPH) providing a new effort to simplify and overcome the current state of the geophysical methods able to assess the presence of hydrocarbon plumes </span><span style="font-family:"">in</span><span style="font-family:""> industrial environments regarding the time cost of the survey and the traceable indication of the spectral shi</span><span style="font-family:"">ft</span><span style="font-family:"">ment shown in the plume volume.</span>展开更多
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
基金National Natural Science Foundation of China under Grant No.52278534Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.
基金supported in part by the National Natural Science Foundation of China under Grant U21B2014,Grant 92267202,and Grant 62271081.
文摘This paper studies the sensing base station(SBS)that has great potential to improve the safety of vehicles and pedestrians on roads.SBS can detect the targets on the road with communication signals using the integrated sensing and communication(ISAC)technique.Compared with vehicle-mounted radar,SBS has a better sensing field due to its higher deployment position,which can help solve the problem of sensing blind areas.In this paper,key technologies of SBS are studied,including the beamforming algorithm,beam scanning scheme,and interference cancellation algorithm.To transmit and receive ISAC signals simultaneously,a double-coupling antenna array is applied.The free detection beam and directional communication beam are proposed for joint communication and sensing to meet the requirements of beamwidth and pointing directions.The joint timespace-frequency domain division multiple access algorithm is proposed to cancel the interference of SBS,including multiuser interference and duplex interference between sensing and communication.Finally,the sensing and communication performance of SBS under the industrial scientific medical power limitation is analyzed and simulated.Simulation results show that the communication rate of SBS can reach over 100 Mbps and the range of sensing and communication can reach about 500 m.
基金supported in part by the Natural Science Foundation of China(NSFC)under Grant 61971102in part by the Key Research and Development Program of Zhejiang Province under Grant 2022C01093.
文摘In indoor environments,various batterypowered Internet of Things(IoT)devices,such as remote controllers and electronic tags on high-level shelves,require efficient energy management.However,manually monitoring remaining energy levels and battery replacement is both inadequate and costly.This paper introduces an energy management system for indoor IoT,which includes a mobile energy station(ES)for enabling on-demand wireless energy transfer(WET)in radio frequency(RF),some energy receivers(ERs),and a cloud server.By implementing a two-stage positioning system and embedding energy receivers into traditional IoT devices,we robustly manage their energy storage.The experimental results demonstrate that the energy receiver can harvest a minimum power of 58 mW.
基金funded by the Aurora Programfunded by National Sciences and Engineering Research Council of Canada (NSERC)Ontario Ministry of Transportation (MTO)
文摘This article presents a comprehensive framework for determining the location of road weather information system (RWIS) stations over a regional road network. In the proposed methodology, the region is divided into a grid of equal-sized zones which are considered as the minimum spatial unit for allocating a candidate set of RWIS stations. These zones are ranked according to a set of pre-specified criteria that reflect the needs for, and potential benefits from, real-time RWIS, including road surface temperature variability, precipitation, network traffic, and collision patterns. A case study based on the existing RWIS network in the province of Ontario was conducted to illustrate the major features of the proposed method and evaluate the implications of alternative loca- tion selection criteria. The findings of the study suggest that it is feasible to develop a systematic process for locating RWIS stations using an integrated location criterion to capture multiple factors being considered in prac- tice. The study has also revealed the need to establish quantitative models for estimating the benefit of real-time information from RWIS stations, which is the foundation of a cost-benefit-based RWIS location optimization model.
基金supported by the National Natural Science Foundation of China(No.51575047)
文摘For the charging station construction of electric vehicle,location selecting is a key issue.There are two problems in location selection of the electric vehicle charging station.One is determining the location of charging station;the other is evaluating the location of charging station.To determine the charging station location,an spatial clustering algorithm is proposed and programmed.The example simulation shows the effectiveness of the spatial clustering algorithm.To evaluate the charging station location,a multi-hierarchical fuzzy method is proposed.Based on the location factors of electric vehicle charging station,the hierarchical evaluation structure of electric vehicle charging station location is constructed,including three levels,4first-class factors and 14second-class factors.The fuzzy multi-hierarchical evaluation model and algorithm are built.The analysis results show that the multi-hierarchical fuzzy method can reasonably complete the electric vehicle charging station location evaluation.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
基金This work was supported by“The National Natural Science Foundation of China(No.41404033)”“The National Science and Technology Basic Work of China(No.2015FY310200)”+1 种基金“The State Key Program of National Natural Science Foundation of China(No.41730109)”“The Jiangsu Dual Creative Teams Program Project Awarded in 2017”and thanks for the data from IGS and iGMAS。
文摘Designing the optimal distribution of Global Navigation Satellite System(GNSS)ground stations is crucial for determining the satellite orbit,satellite clock and Earth Rotation Parameters(ERP)at a desired precision using a limited number of stations.In this work,a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed,named the minimum Orbit and ERP Dilution of Precision Factor(OEDOP)criterion.To quickly identify the specific station locations for the optimal station distribution on a map,a method for the rapid determination of the selected station locations is developed,which is based on the map grid zooming and heuristic technique.Using the minimum OEDOP criterion and the proposed method for the rapid determination of optimal station locations,an optimal or near-optimal station distribution scheme for 17 newly built BeiDou Navigation Satellite System(BDS)global tracking stations is suggested.To verify the proposed criterion and method,real GNSS data are processed.The results show that the minimum OEDOP criterion is valid,as the smaller the value of OEDOP,the better the precision of the satellite orbit and ERP determination.Relative to the exhaustive method,the proposed method significantly improves the computational efficiency of the optimal station location determination.In the case of 3 newly built stations,the computational efficiency of the proposed method is 35 times greater than that of the exhaustive method.As the number of stations increases,the improvement in the computational efficiency becomes increasingly obvious.
文摘The joint location planning of charging/battery-swap facilities for electric vehicles is a complex problem.Considering the differences between these two modes of power replenishment,we constructed a joint location-planning model to minimize construction and operation costs,user costs,and user satisfaction-related penalty costs.We designed an improved genetic algorithm that changes the crossover rate using the fitness value,memorizes,and transfers excellent genes.In addition,the present model addresses the problem of“premature convergence”in conventional genetic algorithms.A simulated example revealed that our proposed model could provide a basis for optimized location planning of charging/battery-swapping facilities at different levels under different charging modes with an improved computing efficiency.The example also proved that meeting more demand for power supply of electric vehicles does not necessarily mean increasing the sites of charging/battery-swap stations.Instead,optimizing the level and location planning of charging/battery-swap stations can maximize the investment profit.The proposed model can provide a reference for the government and enterprises to better plan the location of charging/battery-swap facilities.Hence,it is of both theoretical and practical value.
文摘Traditional material handling vehicles often use internal combustion engines as their power source, which results in exhaust emissions that pollute the environment. In contrast, automated material handling vehicles have the advantages of zero emissions, low noise, and low vibration, thus avoiding exhaust pollution and providing a more comfortable working environment for operators. In order to achieve the goals of “peaking carbon emissions by 2030 and achieving carbon neutrality by 2060”, the use of environmentally friendly autonomous material handling vehicles for material transportation is an inevitable trend. To maximize the amount of transported materials, consider peak-to-valley electricity pricing, battery pack procurement, and the construction of charging and swapping stations while achieving “minimum daily transportation volume” and “lowest investment and operational cost over a 3-year settlement period” with the shortest overall travel distance for all material handling vehicles, this paper examines two different scenarios and establishes goal programming models. The appropriate locations for material handling vehicle swapping stations and vehicle battery pack scheduling schemes are then developed using the NSGA-II algorithm and ant colony optimization algorithm. The results show that, while ensuring a daily transportation volume of no less than 300 vehicles, the lowest investment and operational cost over a 3-year settlement period is approximately 24.1 million Yuan. The material handling vehicles follow the shortest path of 119.2653 km passing through the designated retrieval points and have two shortest routes. Furthermore, the advantages and disadvantages of the proposed models are analyzed, followed by an evaluation, deepening, and potential extension of the models. Finally, future research directions in this field are suggested.
基金supported by the Special Fund of Information Operational Projects from China Earthquake Administration(K1809-4)
文摘China has mobile phone penetration rate of over 96.2%.Mobile phone has become the largest Internet terminal for Chinese Internet users.Population geographic distribution in earthquake zones can be got based on mobile phone positioning and map matching.For reducing earthquake black-box stage,we propose a real-time collection,correction and schedule algorithm of population position data by four stream processing environments(Redis,Hbase,Kafka,and Spark Streaming)in this paper.For labeling precisely population geographic distribution on the network map,matching of population geographic coordinates and map coordinates are optimized by sample comparison based on location data of mobile communication base stations and prefecture level cities.The test result shows the proposed system is high efficient and can rapidly respond to any emerging parallel tasks during the earthquake.A high-precision heat map of affected population can be produced and published on-line within 2 min after the devastating earthquake happened.
基金Supported by National S&T Major Program of China(2013ZX03003002-003)
文摘A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
基金supported by the Science and Technology Project of Shanxi Province(20140313023-1)the special earthquake research project of China Earthquake Administration(201208009)+1 种基金Natural Science Foundation of ShanxiChina(2011021024-1)
文摘In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.
基金financial support of the Fundamental Research Funds for the Central Universities(Grant No.2022XSCX35)the National Natural Science Foundation of China(Grant Nos.51934007 and 52104230).
文摘Microseismic source location is crucial for the early warning of rockburst risks.However,the conventional methods face challenges in terms of the microseismic wave velocity and arrival time accuracy.Intelligent techniques,such as the full convolutional neural network(FCNN),can capture spatial information but struggle with complex microseismic sequence.Combining the FCNN with the long shortterm memory(LSTM)network enables better time-series signal classification by integrating multiscale information and is therefore suitable for waveform location.The LSTM-FCNN model does not require extensive data preprocessing and it simplifies the microseismic source location through feature extraction.In this study,we utilized the LSTM-FCNN as a regression learning model to locate the seismic focus.Initially,the method of short-time-average/long-time-average(STA/LTA)arrival time picking was employed to augment spatiotemporal information.Subsequently,oversampling the on-site data was performed to address the issue of data imbalance,and finally,the performance of LSTM-FCNN was tested.Meanwhile,we compared the LSTM-FCNN model with previous deep-learning models.Our results demonstrated remarkable location capabilities with a mean absolute error(MAE)of only 7.16 m.The model can realize swift training and high accuracy,thereby significantly improving risk warning of rockbursts.
基金the Research Council of Norway(Grant No.244029)the project‘Stable dams’,FORMAS(Grant No.2019e01236)+1 种基金the project‘Improved safety assessment of concrete dams’,and SVC(Grant No.VKU32019)the project‘Safe dams’,that supported the development of the research presented in this article.
文摘When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material.
基金funded by the key project of the National Natural Science Foundation of China (No.61431001)the National High-Tech R&D Program (863 Program 2015AA01A705)New Technology Star Plan of Beijing (No.xx2013052)
文摘In centralized cellular network architecture,the concept of virtualized Base Station(VBS) becomes attracting since it enables all base stations(BSs) to share computing resources in a dynamic manner. This can significantly improve the utilization efficiency of computing resources. In this paper,we study the computing resource allocation strategy for one VBS by considering the non-negligible effect of delay introduced by switches. Specifically,we formulate the VBS's sum computing rate maximization as a set optimization problem. To address this problem,we firstly propose a computing resource schedule algorithm,namely,weight before one-step-greedy(WBOSG),which has linear computation complexity and considerable performance. Then,OSG retreat(OSG-R) algorithm is developed to further improve the system performance at the expense of computational complexity. Simulation results under practical setting are provided to validate the proposed two algorithms.
文摘To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.
文摘The present paper describes the implementation of GPR 3D survey for detecting and delineating possible remain<span style="font-family:"">s</span><span style="font-family:""> of hydrocarbon plumes on a gas station. The 3D-imaging was used for the detection of anomalous zones that were analyzed with some relevant signal attributes extracted by digital signal processing. These signal attributes or parameters ha</span><span style="font-family:"">ve</span><span style="font-family:""> been the frequency of the maximum energy concentration on time-frequency distribution and instantaneous amplitude that could be related </span><span style="font-family:"">to</span><span style="font-family:""> the local response of the electromagnetic interaction and the presence of hydrocarbon plumes or soil contaminated area</span><span style="font-family:"">s</span><span style="font-family:"">. The implementation methodology took place at a gas station monitored with a piezometric sensor installation with soil layer information. The 3D-imaging of processed data and its slicing tool permits visualizing expected targets as pipes, tanks and installations in the subsoil exposing the anomalous zones for refined analyses. This further processing has used some spectral attributes of the signal to assess the real presence of the total petroleum hydrocarbons (TPH) providing a new effort to simplify and overcome the current state of the geophysical methods able to assess the presence of hydrocarbon plumes </span><span style="font-family:"">in</span><span style="font-family:""> industrial environments regarding the time cost of the survey and the traceable indication of the spectral shi</span><span style="font-family:"">ft</span><span style="font-family:"">ment shown in the plume volume.</span>