In this paper, 1416 conventional ground-based meteorological observation stations on the mainland of China were subdivided into groups of differing spatial density. Data from each subgroup were then used to analyze va...In this paper, 1416 conventional ground-based meteorological observation stations on the mainland of China were subdivided into groups of differing spatial density. Data from each subgroup were then used to analyze variations in the tropical cyclone(TC) precipitation statistics derived from each subgroup across the mainland of China(excluding Taiwan, Hong Kong, and Macao), as well as in two regions(east China and south China) and three provinces(Guangdong, Hainan, and Jiangxi) between 1981 and 2010. The results showed that for the mainland of China, total precipitation, mean annual precipitation, mean daily precipitation, and its spatial distribution were the same regardless of the spatial density of the stations. However, some minor differences were evident with respect to precipitation extremes and their spatial distribution. Overall, there were no significant variations in the TC precipitation statistics calculated from different station density schemes for the mainland of China. The regional and provincial results showed no significant differences in mean daily precipitation, but this was not the case for the maximum daily precipitation and torrential rain frequency. The maximum daily precipitation calculated from the lower-density station data was slightly less than that based on the higher-density station schemes, and this effect should be taken into consideration when interpreting regional climate statistics. The impact of station density on TC precipitation characteristics was more obvious for Hainan than for Guangdong or Jiangxi provinces. In addition, the effects were greater for south China(including Guangxi Zhuang Autonomous region, Guangdong, and Hainan provinces) than east China(including Shandong, Jiangsu, Zhejiang, Shanghai, Fujian, Anhui, and Jiangxi provinces). Furthermore, the analysis proved that the statistical climatic characteristics began to change significantly when the station spacing was between 40 and 50 km,which are close to the mean spacing for all stations across the mainland of China. Moreover, TC areal precipitation parameters, including mean total areal precipitation and mean daily areal precipitation, also began to change significantly when the spacing was between 40 and 50 km, and were completely different when it was between 100 and200 km.展开更多
We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS i...We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS is equipped with four (4) cellular modems for weather data delivery. The effectiveness of up-links is challenging because of overlapping spatial-temporal factors such as the presence of good reflectors that lead to multi-path effects, interference, network load or other reasons. We argue that, there is a strong need for independent assessments of their robustness, to perform end-to-end network measurement. However, it is yet difficult to go from a particular measurement to an assessment of the entire network. We extensively measure the variability of Radio Signal Strength (RSSI) as link metric on the cellular modems. The RSSI is one of the important link metrics that can determine the robustness of received RF signals, and explore how they differed from one another at a particular location and instant time. We also apply the statistical analysis that quantifies the level of stability by considering the robustness, referring short-term variation, and determines good up-link in comparison to weak one. The results show that the robustness of cellular up-links exists for an unpredictable period of time and lower than one could hope. More than 50% of up-links are intermittent. Therefore, we plan to extend our work by exploring RSSI thresholds, to develop a classification scheme supporting a decision whether a link is either intermittent or not. This will help in normalizing the level of stability, to design the RSSI estimation metric for the robust routing protocol in weather data networks.展开更多
The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that deman...The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.展开更多
The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manag...The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).展开更多
A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The statio...A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The station density and observation frequency are encrypted to obtain observation data with higher spatial and temporal resolution.The original message with fixed element data location is the data combination of all observation elements and the maximum observation gradient of each element,which not only has higher invalid data redundancy,but also restricts the efficiency of data collection and processing,and also increases communication costs.An adaptive coding design method for the original message of automatic weather station is proposed.The embedded software coding algorithm of the weather station collector is optimized according to"plug and output"to realize intelligent networking,intelligent identification of observation elements and gradients,and dynamic flexible output of messages with variable length.The intelligent networking and business application of nearly 4000 automatic weather stations across the province show that the networking data acquisition and processing are efficient and stable.展开更多
Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting ...Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results.展开更多
In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be sev...In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.展开更多
In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments...In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.展开更多
In this paper,considering the cost of base station,coverage,call quality,and other practical factors,a multi-objective optimal site planning scheme is proposed.Firstly,based on practical needs,mathematical modeling me...In this paper,considering the cost of base station,coverage,call quality,and other practical factors,a multi-objective optimal site planning scheme is proposed.Firstly,based on practical needs,mathematical modeling methods were used to establish mathematical expressions for the three sub-objectives of cost objectives,coverage objectives,and quality objectives.Then,a multi-objective optimization model was established by combining threshold and traffic volume constraints.In order to reduce the time complexity of optimization,a non-dominated sorting genetic algorithm(NSGA)is used to solve the multi-objective optimization problem of site planning.Finally,a strategy for clustering and optimizing weak coverage areas was proposed.In order to avoid redundant neighborhood retrieval during cluster expansion,the Fast Density-Based Spatial Clustering of Applications with Noise(FDBSCAN)clustering method was adopted.With different sub-objectives as the main objectives,this paper obtained the distribution map of weak coverage areas before and after the establishment of new base stations,as well as relevant site planning maps,and provided three planning schemes for different main objectives.The simulation results show that the traffic coverage of the three station planning schemes is above 90%.The change in the main optimization objective will result in a significant difference between the cost of the three solutions and the coverage of weak coverage points.展开更多
With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co...Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as spac...Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment ...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.展开更多
Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the f...Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric v...The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.展开更多
The power supply and distribution systems for Antarctic research stations have special characteristics.In light of a worldwide trend toward a gradual increase in the application of renewable energy,an analysis was per...The power supply and distribution systems for Antarctic research stations have special characteristics.In light of a worldwide trend toward a gradual increase in the application of renewable energy,an analysis was performed to assess the feasibility of achieving a direct current power supply and distribution at Antarctic research stations by comparing the characteristics of direct current and alternating current electricity.Research was also performed on the status quo and future trends in direct current power supply and distribution systems in Antarctica research stations in combination with case studies.展开更多
4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfac...4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
基金Natural Science Foundation of Shanghai(15ZR1449900)Natural Science Foundation of China(41675116)+1 种基金Key Program for International S&T Cooperation Projects of China(2017YFE0107700)2015 Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GYHY201506007)
文摘In this paper, 1416 conventional ground-based meteorological observation stations on the mainland of China were subdivided into groups of differing spatial density. Data from each subgroup were then used to analyze variations in the tropical cyclone(TC) precipitation statistics derived from each subgroup across the mainland of China(excluding Taiwan, Hong Kong, and Macao), as well as in two regions(east China and south China) and three provinces(Guangdong, Hainan, and Jiangxi) between 1981 and 2010. The results showed that for the mainland of China, total precipitation, mean annual precipitation, mean daily precipitation, and its spatial distribution were the same regardless of the spatial density of the stations. However, some minor differences were evident with respect to precipitation extremes and their spatial distribution. Overall, there were no significant variations in the TC precipitation statistics calculated from different station density schemes for the mainland of China. The regional and provincial results showed no significant differences in mean daily precipitation, but this was not the case for the maximum daily precipitation and torrential rain frequency. The maximum daily precipitation calculated from the lower-density station data was slightly less than that based on the higher-density station schemes, and this effect should be taken into consideration when interpreting regional climate statistics. The impact of station density on TC precipitation characteristics was more obvious for Hainan than for Guangdong or Jiangxi provinces. In addition, the effects were greater for south China(including Guangxi Zhuang Autonomous region, Guangdong, and Hainan provinces) than east China(including Shandong, Jiangsu, Zhejiang, Shanghai, Fujian, Anhui, and Jiangxi provinces). Furthermore, the analysis proved that the statistical climatic characteristics began to change significantly when the station spacing was between 40 and 50 km,which are close to the mean spacing for all stations across the mainland of China. Moreover, TC areal precipitation parameters, including mean total areal precipitation and mean daily areal precipitation, also began to change significantly when the spacing was between 40 and 50 km, and were completely different when it was between 100 and200 km.
文摘We present a problem for benchmarking the robustness of cellular up-links, in an automatic weather station (AWS) testbed. Based on the problem, we conduct a small-scale measurement study of robustness, where the AWS is equipped with four (4) cellular modems for weather data delivery. The effectiveness of up-links is challenging because of overlapping spatial-temporal factors such as the presence of good reflectors that lead to multi-path effects, interference, network load or other reasons. We argue that, there is a strong need for independent assessments of their robustness, to perform end-to-end network measurement. However, it is yet difficult to go from a particular measurement to an assessment of the entire network. We extensively measure the variability of Radio Signal Strength (RSSI) as link metric on the cellular modems. The RSSI is one of the important link metrics that can determine the robustness of received RF signals, and explore how they differed from one another at a particular location and instant time. We also apply the statistical analysis that quantifies the level of stability by considering the robustness, referring short-term variation, and determines good up-link in comparison to weak one. The results show that the robustness of cellular up-links exists for an unpredictable period of time and lower than one could hope. More than 50% of up-links are intermittent. Therefore, we plan to extend our work by exploring RSSI thresholds, to develop a classification scheme supporting a decision whether a link is either intermittent or not. This will help in normalizing the level of stability, to design the RSSI estimation metric for the robust routing protocol in weather data networks.
文摘The traffic activity offifth generation(5G)networks demand for new energy management techniques that is dynamic deep and longer duration of sleep as compared to the fourth generation(4G)network technologies that demand always for varied control and data signalling based on control base station(CBS)and data base station(DBS).Hence,this paper discusses the energy management in wireless cellular networks using wide range of control for twice the reduction in energy conservation in non-standalone deployment of 5G network.As the new radio(NR)based 5G network is configured to transmit signal blocks for every 20 ms,the proposed algorithm implements withstanding capacity of on or off based energy switching,which in-turn operates in wide range control by carrying out reduced computational complexity.The proposed Wide range of control for base station in green cellular network using sleep mode for switch(WGCNS)algorithm toon and off the base station will work in heavy load with neighbouring base station.For reducing the overhead duration in air,heuristic versions of the algorithm are proposed at the base station.The algorithm operates based on the specification with suggested protocol-level to give best amount of energy savings.The proposed algorithm reduces 40%to 83%of residual energy based on the traffic pattern of the urban scenario.
文摘The networking of microgrids has received significant attention in the form of a smart grid.In this paper,a set of smart railway stations,which is assumed as microgrids,is connected together.It has been tried to manage the energy exchanged between the networked microgrids to reduce received energy from the utility grid.Also,the operational costs of stations under various conditions decrease by applying the proposed method.The smart railway stations are studied in the presence of photovoltaic(PV)units,energy storage systems(ESSs),and regenerative braking strategies.Studying regenerative braking is one of the essential contributions.Moreover,the stochastic behaviors of the ESS’s initial state of energy and the uncertainty of PV power generation are taken into account through a scenario-based method.The networked microgrid scheme of railway stations(based on coordinated operation and scheduling)and independent operation of railway stations are studied.The proposed method is applied to realistic case studies,including three stations of Line 3 of Tehran Urban and Suburban Railway Operation Company(TUSROC).The rolling stock is simulated in the MATLAB environment.Thus,the coordinated operation of networked microgrids and independent operation of railway stations are optimized in the GAMS environment utilizing mixed-integer linear programming(MILP).
基金Supported by Technical Innovation Team Project of Collaborative Observation and Multi-source Live Data Fusion Analysis of Guangdong Meteorological Bu-reau(GRMCTD202103)R&D Plan Projects of Key Fields in Guangdong Province(2020B1111200001).
文摘A large number of automatic weather stations with different observation elements and gradient configurations are connected for operation,in order to meet the meteorological service needs of different scenes.The station density and observation frequency are encrypted to obtain observation data with higher spatial and temporal resolution.The original message with fixed element data location is the data combination of all observation elements and the maximum observation gradient of each element,which not only has higher invalid data redundancy,but also restricts the efficiency of data collection and processing,and also increases communication costs.An adaptive coding design method for the original message of automatic weather station is proposed.The embedded software coding algorithm of the weather station collector is optimized according to"plug and output"to realize intelligent networking,intelligent identification of observation elements and gradients,and dynamic flexible output of messages with variable length.The intelligent networking and business application of nearly 4000 automatic weather stations across the province show that the networking data acquisition and processing are efficient and stable.
基金the funding provided by the “German–Ethiopian SDG Graduate School: Climate Change Effects on Food Security (CLIFOOD)”, established by the Food Security Center of the University of Hohenheim (Germany) and Hawassa University (Ethiopia)provided by the German Academic Exchange Service (DAAD) through funds from the Federal Ministry for Economic Cooperation and Development (BMZ)。
文摘Seasonal rainfall plays a vital role in both environmental dynamics and decision-making for rainfed agriculture in Ethiopia, a country often impacted by extreme climate events such as drought and flooding. Predicting the onset of the rainy season and providing localized rainfall forecasts for Ethiopia is challenging due to the changing spatiotemporal patterns and the country's rugged topography. The Climate Hazards Group Infra Red Precipitation with Station Data(CHIRPS), ERA5-Land total precipitation and temperature data are used from 1981–2022 to predict spatial rainfall by applying an artificial neural network(ANN). The recurrent neural network(RNN) is a nonlinear autoregressive network with exogenous input(NARX), which includes feed-forward connections and multiple network layers, employing the Levenberg Marquart algorithm. This method is applied to downscale data from the European Centre for Medium-range Weather Forecasts fifth-generation seasonal forecast system(ECMWF-SEAS5) and the Euro-Mediterranean Centre for Climate Change(CMCC) to the specific locations of rainfall stations in Ethiopia for the period 1980–2020. Across the stations, the results of NARX exhibit strong associations and reduced errors. The statistical results indicate that, except for the southwestern Ethiopian highlands, the downscaled monthly precipitation data exhibits high skill scores compared to the station records, demonstrating the effectiveness of the NARX approach for predicting local seasonal rainfall in Ethiopia's complex terrain. In addition to this spatial ANN of the summer season precipitation, temperature, as well as the combination of these two variables, show promising results.
基金support from the National Natural Science Foundation of China (No.52204202)the Hunan Provincial Natural Science Foundation of China (No.2023JJ40058)the Science and Technology Program of Hunan Provincial Departent of Transportation (No.202122).
文摘In recent years,frequent fire disasters have led to enormous damage in China.Effective firefighting rescues can minimize the losses caused by fires.During the rescue processes,the travel time of fire trucks can be severely affected by traffic conditions,changing the effective coverage of fire stations.However,it is still challenging to determine the effective coverage of fire stations considering dynamic traffic conditions.This paper addresses this issue by combining the traveling time calculationmodelwith the effective coverage simulationmodel.In addition,it proposes a new index of total effective coverage area(TECA)based on the time-weighted average of the effective coverage area(ECA)to evaluate the urban fire services.It also selects China as the case study to validate the feasibility of the models,a fire station(FS-JX)in Changsha.FS-JX station and its surrounding 9,117 fire risk points are selected as the fire service supply and demand points,respectively.A total of 196 simulation scenarios throughout a consecutiveweek are analyzed.Eventually,1,933,815 sets of valid sample data are obtained.The results showed that the TECA of FS-JX is 3.27 km^(2),which is far below the standard requirement of 7.00 km^(2) due to the traffic conditions.The visualization results showed that three rivers around FS-JX interrupt the continuity of its effective coverage.The proposed method can provide data support to optimize the locations of fire stations by accurately and dynamically determining the effective coverage of fire stations.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3901000)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-037)+2 种基金the International Partnership Program of the Chinese Academy of Sciences(060GJHZ2022070MI)the MOST-ESA Dragon-5 Programme for Monitoring Greenhouse Gases from Space(ID.59355)the Finland–China Mobility Cooperation Project funded by the Academy of Finland(No.348596)。
文摘In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.
基金The work is supported by Jiangsu Higher Education“Qinglan Project”,an Open Project of Criminal Inspection Laboratory in Key Laboratories of Sichuan Provincial Universities(2023YB03)Major Project of Basic Science(Natural Science)Research in Higher Education Institutions in Jiangsu Province(23KJA520004)+4 种基金Jiangsu Higher Education Philosophy and Social Sciences Research General Project(2023SJYB0467)Action Plan of the National Engineering Research Center for Cybersecurity Level Protection and Security Technology(KJ-24-004)Jiangsu Province Degree and Postgraduate Education and Teaching ReformProject(JGKT24_B036)Digital Forensics Engineering Research Center of the Ministry of Education Open Project(DF20-010)the Youth Fund of Nanjing Railway Vocational and Technical College(Yq220012).
文摘In this paper,considering the cost of base station,coverage,call quality,and other practical factors,a multi-objective optimal site planning scheme is proposed.Firstly,based on practical needs,mathematical modeling methods were used to establish mathematical expressions for the three sub-objectives of cost objectives,coverage objectives,and quality objectives.Then,a multi-objective optimization model was established by combining threshold and traffic volume constraints.In order to reduce the time complexity of optimization,a non-dominated sorting genetic algorithm(NSGA)is used to solve the multi-objective optimization problem of site planning.Finally,a strategy for clustering and optimizing weak coverage areas was proposed.In order to avoid redundant neighborhood retrieval during cluster expansion,the Fast Density-Based Spatial Clustering of Applications with Noise(FDBSCAN)clustering method was adopted.With different sub-objectives as the main objectives,this paper obtained the distribution map of weak coverage areas before and after the establishment of new base stations,as well as relevant site planning maps,and provided three planning schemes for different main objectives.The simulation results show that the traffic coverage of the three station planning schemes is above 90%.The change in the main optimization objective will result in a significant difference between the cost of the three solutions and the coverage of weak coverage points.
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金funded by the BeijingNatural Science Foundation of China(8222003)National Natural Science Foundation of China(41807180).
文摘Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
文摘Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.
基金supported by the Guangxi Science and Technology Major Special Project (Project Number GUIKEAA22067079-1).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Themassive integration of high-proportioned distributed photovoltaics into distribution networks poses significant challenges to the flexible regulation capabilities of distribution stations.To accurately assess the flexible regulation capabilities of distribution stations,amulti-temporal and spatial scale regulation capability assessment technique is proposed for distribution station areas with distributed photovoltaics,considering different geographical locations,coverage areas,and response capabilities.Firstly,the multi-temporal scale regulation characteristics and response capabilities of different regulation resources in distribution station areas are analyzed,and a resource regulation capability model is established to quantify the adjustable range of different regulation resources.On this basis,considering the limitations of line transmission capacity,a regulation capability assessment index for distribution stations is proposed to evaluate their regulation capabilities.Secondly,considering different geographical locations and coverage areas,a comprehensive performance index based on electrical distance modularity and active power balance is established,and a cluster division method based on genetic algorithms is proposed to fully leverage the coordination and complementarity among nodes and improve the active power matching degree within clusters.Simultaneously,an economic optimization model with the objective of minimizing the economic cost of the distribution station is established,comprehensively considering the safety constraints of the distribution network and the regulation constraints of resources.This model can provide scientific guidance for the economic dispatch of the distribution station area.Finally,case studies demonstrate that the proposed assessment and optimization methods effectively evaluate the regulation capabilities of distribution stations,facilitate the consumption of distributed photovoltaics,and enhance the economic efficiency of the distribution station area.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
基金the National Social Science Foundation of China(No.18AJL014)。
文摘The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.
文摘The power supply and distribution systems for Antarctic research stations have special characteristics.In light of a worldwide trend toward a gradual increase in the application of renewable energy,an analysis was performed to assess the feasibility of achieving a direct current power supply and distribution at Antarctic research stations by comparing the characteristics of direct current and alternating current electricity.Research was also performed on the status quo and future trends in direct current power supply and distribution systems in Antarctica research stations in combination with case studies.
基金Sponsored by the National Natural Science Foundation of China(51708004)Beijing Youth Teaching Master Team Construction Project(108051360023XN261)Yuyou Talent Training Program of North China University of Technology(215051360020XN160/009).
文摘4 elderly care service stations in Zhanlan Road Street,Xicheng District,Beijing are selected,and questionnaires are designed and distributed to the surrounding elderly population to understand their needs and satisfaction with the station environment.By observing elderly care service stations on site,the characteristics,obstacles,and shortcomings of the environment are recorded,and relevant data are collected and analyzed,such as the characteristics of the elderly population being interviewed,the planning and design data of the station environment,and the distribution of service facilities.The overall characteristics of the spatial environment of elderly care stations are summarized,and renovation measures and optimization suggestions are provided for the current shortcomings,thereby providing some basis for the spatial design of community elderly care service stations in the future.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.