Zonda is a strong, warm, very dry wind associated with adiabatic compression upon descending the eastern slopes of the Andes Cordillera in western-central Argentina. This research seeks, first, to validate the skill o...Zonda is a strong, warm, very dry wind associated with adiabatic compression upon descending the eastern slopes of the Andes Cordillera in western-central Argentina. This research seeks, first, to validate the skill of a statistical forecast of zonda based on the behavior of the vertical structure of the atmosphere and, second, to describe the climatology of the vertical profile leeward of the Andes. The forecast was built for May-August 1974/1983, and was verified against a series of cases recorded in the Mendoza Aero and San Juan Aero weather stations for May-August 2005/2014. It made use of the Stepwise Discriminant Analysis (SDA) and rawinsonde data from Mendoza Aero as predictors, with the following input variables: surface pressure, temperature, dew point, and the zonal and meridional components of the wind on surface and of the fixed levels up to 200 hPa. The variables selected as predictors by the SDA were: surface pressure, dew point depression at 850 hPa, meridional wind component at 850 hPa, and zonal wind component at 400 hPa. Climatology of the vertical profile of the atmosphere leeward of the Andes was built from daily rawinsonde data from Mendoza Aero for May-August 1974/1983. Zonda markedly influences the atmospheric structure leeward of the Andes in western-central Argentina. Its maximum impact occurs at 850 to 800 hPa, with significant heating and decrease of humidity. Validation of the prediction program considered deterministic and probabilistic forecasts. Contingency tables show that probability of zonda occurrence in the plains is generally overestimated, and false alarm cases are far more frequent than surprise events. The main contribution of this paper is precisely the validation of the prediction model, which ensures forecasters one more tool to improve zonda forecasting;this, in turn, will aid decision-makers when taking steps to ameliorate zonda wind impact.展开更多
Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analy...Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.展开更多
After analyzing the advantages and disadvantages of dynamical system and statistical system. some simple models with the equations of Lorenz system and auto-regresslon model have been respectively set up,and comparati...After analyzing the advantages and disadvantages of dynamical system and statistical system. some simple models with the equations of Lorenz system and auto-regresslon model have been respectively set up,and comparative experiments conducted.The result of the research demonstrates that in chaotic parametric domain,the accuracy of statistical forecast is higher than that of dynamical forecast,while in non-chaotic parametric domain,dynamical forecast is more accurate than statistical forecast.展开更多
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni...The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.展开更多
In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absenc...In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.展开更多
Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimila...Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation(DA) and model output statistics(MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here,a one-month air quality forecast with the Weather Research and Forecasting-Chemistry(WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational(3 DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3 DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3 DVar DA in improving the operational forecasting ability of WRF-Chem.展开更多
The objectives of this paper are to (I) quantify the effects of age and other key factors on bridge deterioration rates, and (2) provide bridge managers with strategic forecasting tools. A model for forecasting su...The objectives of this paper are to (I) quantify the effects of age and other key factors on bridge deterioration rates, and (2) provide bridge managers with strategic forecasting tools. A model for forecasting substructure conditionisestimated from the National Bridge Inventory that includes the effects of bridge material, design load, structural type, operating rating, average daily traffic, water, and the state where the bridge is located. Bridge age is the quantitative independent variable. The relationship between age and substructure condition is a fourth-order polynomial. Some of the key findings are: (I) a bridge substructure is expected to lose from 0.52 to 0.11 rating points per decade as it ages from 10 to 70 years; (2) levels of deterioration increase significantly as the material changes from concrete, to steel, to timber; (3) slab bridges have lower levels of deterioration than other structures; (4) bridges that span water have lower condition ratings; (5) bridges with higher operating ratingshave higher condition ratings; and (6) substructure condition ratings vary significantly among states.展开更多
In this paper, we construct and implement a new architecture and learning method of customized hybrid RBF neural network for high frequency time series data forecasting. The hybridization is carried out using two runn...In this paper, we construct and implement a new architecture and learning method of customized hybrid RBF neural network for high frequency time series data forecasting. The hybridization is carried out using two running approaches. In the first one, the ARCH (Autoregressive Conditionally Heteroscedastic)-GARCH (Generalized ARCH) methodology is applied. The second modeling approach is based on RBF (Radial Basic Function) neural network using Gaussian activation function with cloud concept. The use of both methods is useful, because there is no knowledge about the relationship between the inputs into the system and its output. Both approaches are merged into one framework to predict the final forecast values. The question arises whether non-linear methods like neural networks can help modeling any non-linearities being inherent within the estimated statistical model. We also test the customized version of the RBF combined with the machine learning method based on SVM learning system. The proposed novel approach is applied to high frequency data of the BUX stock index time series. Our results show that the proposed approach achieves better forecast accuracy on the validation dataset than most available techniques.展开更多
Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events...Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events have been reported.In this paper,the statistical scenarios forecasting method is proposed for wind power ramp event probabilistic forecasting based on the probability generating model.Multi-objective fitness functions are established considering cumulative density functions and higher order moment autocorrelation functions with respect to the consistency of distribution and timing characteristics,respectively.Parameters of probability generating model are calculated by the iterative optimization using the modified genetic algorithm with multi-objective fitness functions.A number of statistical scenarios captured bands are generated accordingly.Eventually,ramp event probability characteristics are detected from scenarios captured bands to evaluate the ramp event forecasting method.A wind plant of Bonneville Power Administration with actual wind power data is selected for calculation and statistical analysis.It is shown that statistical results with multi-objective functions are more accurate than the results with single objective functions.Moreover,the statistical scenarios forecasting method can accurately estimate the characteristics of wind power ramp events.The results verify that the proposed method can guide the generation method of statistical scenarios and forecasting models for ramp events.展开更多
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac...For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.展开更多
1. Present situation of China’s bus industry China’s bus industry has developed at a rapid speed. The annual bus output reached 264500 units in 1993, accounting for 22.4% of the total vehicle output. Bus in use has...1. Present situation of China’s bus industry China’s bus industry has developed at a rapid speed. The annual bus output reached 264500 units in 1993, accounting for 22.4% of the total vehicle output. Bus in use has reached 1.11 mill., making up 13.5% of total vehicles in use. The characteristics of China’s bus industry over the past ten years are as follows:展开更多
文摘Zonda is a strong, warm, very dry wind associated with adiabatic compression upon descending the eastern slopes of the Andes Cordillera in western-central Argentina. This research seeks, first, to validate the skill of a statistical forecast of zonda based on the behavior of the vertical structure of the atmosphere and, second, to describe the climatology of the vertical profile leeward of the Andes. The forecast was built for May-August 1974/1983, and was verified against a series of cases recorded in the Mendoza Aero and San Juan Aero weather stations for May-August 2005/2014. It made use of the Stepwise Discriminant Analysis (SDA) and rawinsonde data from Mendoza Aero as predictors, with the following input variables: surface pressure, temperature, dew point, and the zonal and meridional components of the wind on surface and of the fixed levels up to 200 hPa. The variables selected as predictors by the SDA were: surface pressure, dew point depression at 850 hPa, meridional wind component at 850 hPa, and zonal wind component at 400 hPa. Climatology of the vertical profile of the atmosphere leeward of the Andes was built from daily rawinsonde data from Mendoza Aero for May-August 1974/1983. Zonda markedly influences the atmospheric structure leeward of the Andes in western-central Argentina. Its maximum impact occurs at 850 to 800 hPa, with significant heating and decrease of humidity. Validation of the prediction program considered deterministic and probabilistic forecasts. Contingency tables show that probability of zonda occurrence in the plains is generally overestimated, and false alarm cases are far more frequent than surprise events. The main contribution of this paper is precisely the validation of the prediction model, which ensures forecasters one more tool to improve zonda forecasting;this, in turn, will aid decision-makers when taking steps to ameliorate zonda wind impact.
文摘Based on the monitoring data of ozone(O 3)concentration,conventional meteorological data and reanalysis products in Yulin City from 2018 to 2019,the weather situation of O 3 pollution was classified through case analysis and mathematical statistics.At 500 hPa,the weather situation was divided into continental high pressure type,subtropical high type and mixed type.At 850 hPa,it was divided into southwest air flow type,east air flow type and south air flow type.The correlation between meteorological element and O 3 concentration were analyzed,and factors with good correlation such as temperature,air pressure and wind speed were selected to establish regression equations.The fitting effect was good,and O 3 concentration could be objectively predicted.
基金"National Key Programme for Developing Basic Sciences G1998040900 Part 1".
文摘After analyzing the advantages and disadvantages of dynamical system and statistical system. some simple models with the equations of Lorenz system and auto-regresslon model have been respectively set up,and comparative experiments conducted.The result of the research demonstrates that in chaotic parametric domain,the accuracy of statistical forecast is higher than that of dynamical forecast,while in non-chaotic parametric domain,dynamical forecast is more accurate than statistical forecast.
基金The National Nat-ural Science Foundation of China (NSFC), Grant Nos.90711003, 40375014the program of GYHY200706005, and the APCC Visiting Scientist Program jointly supportedthis work.
文摘The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast.
文摘In atmospheric data assimilation systems, the forecast error covariance model is an important component. However, the paralneters required by a forecast error covariance model are difficult to obtain due to the absence of the truth. This study applies an error statistics estimation method to the Pfiysical-space Statistical Analysis System (PSAS) height-wind forecast error covariance model. This method consists of two components: the first component computes the error statistics by using the National Meteorological Center (NMC) method, which is a lagged-forecast difference approach, within the framework of the PSAS height-wind forecast error covariance model; the second obtains a calibration formula to rescale the error standard deviations provided by the NMC method. The calibration is against the error statistics estimated by using a maximum-likelihood estimation (MLE) with rawindsonde height observed-minus-forecast residuals. A complete set of formulas for estimating the error statistics and for the calibration is applied to a one-month-long dataset generated by a general circulation model of the Global Model and Assimilation Office (GMAO), NASA. There is a clear constant relationship between the error statistics estimates of the NMC-method and MLE. The final product provides a full set of 6-hour error statistics required by the PSAS height-wind forecast error covariance model over the globe. The features of these error statistics are examined and discussed.
基金supported by the State Key Research and Development Program (Grant Nos. 2017YFC0209803, 2016YFC0208504, 2016YFC0203303 and 2017YFC0210106)the National Natural Science Foundation of China (Grant Nos. 91544230, 41575145, 41621005 and 41275128)
文摘Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation(DA) and model output statistics(MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here,a one-month air quality forecast with the Weather Research and Forecasting-Chemistry(WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational(3 DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3 DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3 DVar DA in improving the operational forecasting ability of WRF-Chem.
文摘The objectives of this paper are to (I) quantify the effects of age and other key factors on bridge deterioration rates, and (2) provide bridge managers with strategic forecasting tools. A model for forecasting substructure conditionisestimated from the National Bridge Inventory that includes the effects of bridge material, design load, structural type, operating rating, average daily traffic, water, and the state where the bridge is located. Bridge age is the quantitative independent variable. The relationship between age and substructure condition is a fourth-order polynomial. Some of the key findings are: (I) a bridge substructure is expected to lose from 0.52 to 0.11 rating points per decade as it ages from 10 to 70 years; (2) levels of deterioration increase significantly as the material changes from concrete, to steel, to timber; (3) slab bridges have lower levels of deterioration than other structures; (4) bridges that span water have lower condition ratings; (5) bridges with higher operating ratingshave higher condition ratings; and (6) substructure condition ratings vary significantly among states.
基金supported by the European Regional Development Fund in the IT4Innovations Centre of Excellence project(CZ.1.05/1.1.00/02.0070).
文摘In this paper, we construct and implement a new architecture and learning method of customized hybrid RBF neural network for high frequency time series data forecasting. The hybridization is carried out using two running approaches. In the first one, the ARCH (Autoregressive Conditionally Heteroscedastic)-GARCH (Generalized ARCH) methodology is applied. The second modeling approach is based on RBF (Radial Basic Function) neural network using Gaussian activation function with cloud concept. The use of both methods is useful, because there is no knowledge about the relationship between the inputs into the system and its output. Both approaches are merged into one framework to predict the final forecast values. The question arises whether non-linear methods like neural networks can help modeling any non-linearities being inherent within the estimated statistical model. We also test the customized version of the RBF combined with the machine learning method based on SVM learning system. The proposed novel approach is applied to high frequency data of the BUX stock index time series. Our results show that the proposed approach achieves better forecast accuracy on the validation dataset than most available techniques.
基金This work was supported by the National Basic Research Program of China(No.2012CB215101).
文摘Wind power ramp events increasingly affect the integration of wind power and cause more and more problems to the safety of power grid operation in recent years.Several forecasting techniques for wind power ramp events have been reported.In this paper,the statistical scenarios forecasting method is proposed for wind power ramp event probabilistic forecasting based on the probability generating model.Multi-objective fitness functions are established considering cumulative density functions and higher order moment autocorrelation functions with respect to the consistency of distribution and timing characteristics,respectively.Parameters of probability generating model are calculated by the iterative optimization using the modified genetic algorithm with multi-objective fitness functions.A number of statistical scenarios captured bands are generated accordingly.Eventually,ramp event probability characteristics are detected from scenarios captured bands to evaluate the ramp event forecasting method.A wind plant of Bonneville Power Administration with actual wind power data is selected for calculation and statistical analysis.It is shown that statistical results with multi-objective functions are more accurate than the results with single objective functions.Moreover,the statistical scenarios forecasting method can accurately estimate the characteristics of wind power ramp events.The results verify that the proposed method can guide the generation method of statistical scenarios and forecasting models for ramp events.
基金National Natural Science Foundation of China (70931004)
文摘For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.
文摘1. Present situation of China’s bus industry China’s bus industry has developed at a rapid speed. The annual bus output reached 264500 units in 1993, accounting for 22.4% of the total vehicle output. Bus in use has reached 1.11 mill., making up 13.5% of total vehicles in use. The characteristics of China’s bus industry over the past ten years are as follows: