期刊文献+
共找到55,273篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Network Design through Statistical Evaluation of MANET Routing Protocols
1
作者 Ibrahim Alameri Tawfik Al-Hadhrami +2 位作者 Anjum Nazir Abdulsamad Ebrahim Yahya Atef Gharbi 《Computers, Materials & Continua》 SCIE EI 2024年第7期319-339,共21页
This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc... This paper contributes a sophisticated statistical method for the assessment of performance in routing protocols salient Mobile Ad Hoc Network(MANET)routing protocols:Destination Sequenced Distance Vector(DSDV),Ad hoc On-Demand Distance Vector(AODV),Dynamic Source Routing(DSR),and Zone Routing Protocol(ZRP).In this paper,the evaluation will be carried out using complete sets of statistical tests such as Kruskal-Wallis,Mann-Whitney,and Friedman.It articulates a systematic evaluation of how the performance of the previous protocols varies with the number of nodes and the mobility patterns.The study is premised upon the Quality of Service(QoS)metrics of throughput,packet delivery ratio,and end-to-end delay to gain an adequate understanding of the operational efficiency of each protocol under different network scenarios.The findings explained significant differences in the performance of different routing protocols;as a result,decisions for the selection and optimization of routing protocols can be taken effectively according to different network requirements.This paper is a step forward in the general understanding of the routing dynamics of MANETs and contributes significantly to the strategic deployment of robust and efficient network infrastructures. 展开更多
关键词 Routing protocols statistical approach friedman MANET
下载PDF
On power series statistical convergence and new uniform integrability of double sequences
2
作者 Sevda Y■ld■z Kamil Demirci 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期519-532,共14页
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p... In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings. 展开更多
关键词 power series methods statistical convergence uniform integrability double sequences
下载PDF
Evaluation of Serum Anti-Müllerian Hormone (AMH) Values for 28,016 Bulgarian Women: Prognostic Statistical Model of Age Specific AMH Declining
3
作者 Martin Vladimirov Evan Gatev +6 位作者 Desislava Tacheva Aleksandra Kalacheva Milena Bojilova Serpil Izet Alexander Angelov Nedyalko Kalatchev Iavor K. Vladimirov 《Open Journal of Obstetrics and Gynecology》 2024年第5期651-673,共23页
The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as ... The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health. 展开更多
关键词 Anti-Müllerian Hormone Women Age Ovarian Response ETHNICITY Prognostic statistical Model
下载PDF
Failure evolution and disaster prediction of rock under uniaxial compression based on non-extensive statistical analysis of electric potential
4
作者 Tiancheng Shan Zhonghui Li +7 位作者 Haishan Jia Enyuan Wang Xiaoran Wang Yue Niu Xin Zhang Dong Chen Shan Yin Quancong Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期975-993,共19页
Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial c... Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters. 展开更多
关键词 Electric potential Non-extensive statistical feature Displacement rate q-Gaussian distribution Precursor prediction Rock materials
下载PDF
Rapid Prediction of Wastewater Index Using CNN Architecture and PLS Series Statistical Methods
5
作者 Qiushuang Mo Lili Xu +2 位作者 Fangxiu Meng Shaoyong Hong Xuemei Lin 《Open Journal of Statistics》 2024年第3期243-258,共16页
Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. Fir... Chemical oxygen demand (COD) is an important index to measure the degree of water pollution. In this paper, near-infrared technology is used to obtain 148 wastewater spectra to predict the COD value in wastewater. First, the partial least squares regression (PLS) model was used as the basic model. Monte Carlo cross-validation (MCCV) was used to select 25 samples out of 148 samples that did not conform to conventional statistics. Then, the interval partial least squares (iPLS) regression modeling was carried out on 123 samples, and the spectral bands were divided into 40 subintervals. The optimal subintervals are 20 and 26, and the optimal correlation coefficient of the test set (RT) is 0.58. Further, the waveband is divided into five intervals: 17, 19, 20, 22 and 26. When the number of joint intervals under each interval is three, the optimal RT is 0.71. When the number of joint subintervals is four, the optimal RT is 0.79. Finally, convolutional neural network (CNN) was used for quantitative prediction, and RT was 0.9. The results show that CNN can automatically screen the features inside the data, and the quantitative prediction effect is better than that of iPLS and synergy interval partial least squares model (SiPLS) with joint subinterval three and four, indicating that CNN can be used for quantitative analysis of water pollution degree. 展开更多
关键词 WASTEWATER Near-Infrared Spectroscopy Chemistry Oxygen Demand Partial Least Squares Convolutional Neural Network statistical Optimization
下载PDF
Integration between Genomic and Computational Statistical Surveys for the Screening of SNP Genetic Variants in Inflammatory Bowel Disease (IBD) Pediatric Patients*
6
作者 Dago Dougba Noel Koffi N’Guessan Bénédicte Sonia +8 位作者 Dagnogo Olefongo Daramcoum Wentoin Alimata Marie-Pierre Mauro Giacomelli Dagnogo Dramane Eboulé Ago Eliane Rebecca Yao Saraka Didier Martial Diarrassouba Nafan Giovanni Malerba Raffaele Badolato 《Computational Molecular Bioscience》 2024年第3期146-191,共46页
Inflammatory bowel diseases (IBD) are complex multifactorial disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). Considering that IBD is a genetic and multifactorial disease, we screened for the ... Inflammatory bowel diseases (IBD) are complex multifactorial disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). Considering that IBD is a genetic and multifactorial disease, we screened for the distribution dynamism of IBD pathogenic genetic variants (single nucleotide polymorphisms;SNPs) and risk factors in four (4) IBD pediatric patients, by integrating both clinical exome sequencing and computational statistical approaches, aiming to categorize IBD patients in CD and UC phenotype. To this end, we first aligned genomic read sequences of these IBD patients to hg19 human genome by using bowtie 2 package. Next, we performed genetic variant calling analysis in terms of single nucleotide polymorphism (SNP) for genes covered by at least 20 read genomic sequences. Finally, we checked for biological and genomic functions of genes exhibiting statistically significant genetic variant (SNPs) by introducing Fitcon genomic parameter. Findings showed Fitcon parameter as normalizing IBD patient’s population variability, as well as inducing a relative good clustering between IBD patients in terms of CD and UC phenotypes. Genomic analysis revealed a random distribution of risk factors and as well pathogenic SNPs genetic variants in the four IBD patient’s genome, claiming to be involved in: i) Metabolic disorders, ii) Autoimmune deficiencies;iii) Crohn’s disease pathways. Integration of genomic and computational statistical analysis supported a relative genetic variability regarding IBD patient population by processing IBD pathogenic SNP genetic variants as opposite to IBD risk factor variants. Interestingly, findings clearly allowed categorizing IBD patients in CD and UC phenotypes by applying Fitcon parameter in selecting IBD pathogenic genetic variants. Considering as a whole, the study suggested the efficiency of integrating clinical exome sequencing and computational statistical tools as a right approach in discriminating IBD phenotypes as well as improving inflammatory bowel disease (IBD) molecular diagnostic process. 展开更多
关键词 Inflammatory Bowel Disease (IBD) Crohn Disease (CD) Ulcerative Colitis (UC) Clinical Exome Analysis Computational statistic SNP Genetic Variants
下载PDF
Smart Healthcare Activity Recognition Using Statistical Regression and Intelligent Learning
7
作者 K.Akilandeswari Nithya Rekha Sivakumar +2 位作者 Hend Khalid Alkahtani Shakila Basheer Sara Abdelwahab Ghorashi 《Computers, Materials & Continua》 SCIE EI 2024年第1期1189-1205,共17页
In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health infor... In this present time,Human Activity Recognition(HAR)has been of considerable aid in the case of health monitoring and recovery.The exploitation of machine learning with an intelligent agent in the area of health informatics gathered using HAR augments the decision-making quality and significance.Although many research works conducted on Smart Healthcare Monitoring,there remain a certain number of pitfalls such as time,overhead,and falsification involved during analysis.Therefore,this paper proposes a Statistical Partial Regression and Support Vector Intelligent Agent Learning(SPR-SVIAL)for Smart Healthcare Monitoring.At first,the Statistical Partial Regression Feature Extraction model is used for data preprocessing along with the dimensionality-reduced features extraction process.Here,the input dataset the continuous beat-to-beat heart data,triaxial accelerometer data,and psychological characteristics were acquired from IoT wearable devices.To attain highly accurate Smart Healthcare Monitoring with less time,Partial Least Square helps extract the dimensionality-reduced features.After that,with these resulting features,SVIAL is proposed for Smart Healthcare Monitoring with the help of Machine Learning and Intelligent Agents to minimize both analysis falsification and overhead.Experimental evaluation is carried out for factors such as time,overhead,and false positive rate accuracy concerning several instances.The quantitatively analyzed results indicate the better performance of our proposed SPR-SVIAL method when compared with two state-of-the-art methods. 展开更多
关键词 Internet of Things smart health care monitoring human activity recognition intelligent agent learning statistical partial regression support vector
下载PDF
Comparative Analysis of Statistical Thickness Models for the Determination of the External Specific Surface and the Surface of the Micropores of Materials: The Case of a Clay Concrete Stabilized Using Sugar Cane Molasses
8
作者 Nice Mfoutou Ngouallat Narcisse Malanda +3 位作者 Christ Ariel Ceti Malanda Kris Berjovie Maniongui Erman Eloge Nzaba Madila Paul Louzolo-Kimbembe 《Geomaterials》 2024年第2期13-28,共16页
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and... In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research. 展开更多
关键词 statistical Thickness Model External Specific Surface Microporous Surface Clay Concrete MOLASSES
下载PDF
Study on Key Biological Indicators of Diabetes Based on Statistical Tests
9
作者 Shuaibin Yang 《Journal of Clinical and Nursing Research》 2024年第7期267-273,共7页
Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leadi... Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status. 展开更多
关键词 Diabetes diagnosis statistical test Nonparametric statistics Normality test
下载PDF
Statistical Approach to Basketball Players’Skill Level
10
作者 Jiajun Wu 《Journal of Applied Mathematics and Physics》 2024年第4期1352-1363,共12页
In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely impor... In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely important. In this article, a complex non-linear process is considered by taking into account the average points per game of each player, playing time, shooting percentage, and others. This physics-informed statistics is to construct a multiple linear regression model with physics-informed neural networks. Based on the official data provided by the American Basketball League, and combined with specific methods of R program analysis, the regression model affecting the player’s average points per game is verified, and the key factors affecting the player’s average points per game are finally elucidated. The paper provides a novel window for coaches to make meaningful in-game adjustments to team members. 展开更多
关键词 Physics-Informed statistics Multiple Linear Regression Average Score per Game R Program Analysis
下载PDF
Nonparametric Statistical Feature Scaling Based Quadratic Regressive Convolution Deep Neural Network for Software Fault Prediction
11
作者 Sureka Sivavelu Venkatesh Palanisamy 《Computers, Materials & Continua》 SCIE EI 2024年第3期3469-3487,共19页
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w... The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods. 展开更多
关键词 Software defect prediction feature selection nonparametric statistical Torgerson-Gower scaling technique quadratic censored regressive convolution deep neural network softstep activation function nelder-mead method
下载PDF
Statistical Inversion Based on Nonlinear Weighted Anisotropic Total Variational Model and Its Application in Electrical Impedance Tomography
12
作者 Pengfei Qi 《Engineering(科研)》 2024年第1期1-7,共7页
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to... Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach. 展开更多
关键词 statistical Inverse Problem Electrical Impedance Tomography NWATV Prior Markov Chain Monte Carlo Sampling
下载PDF
Pathways to Enhancing the Quality of Agricultural Statistical Services in the Context of Rural Revitalization
13
作者 Zhanshen Wang Han Xu 《Proceedings of Business and Economic Studies》 2024年第4期220-225,共6页
In the strategic context of rural revitalization,optimizing the quality of agricultural statistical services is a crucial element for advancing agricultural modernization and sustainable rural economic development.Thi... In the strategic context of rural revitalization,optimizing the quality of agricultural statistical services is a crucial element for advancing agricultural modernization and sustainable rural economic development.This paper focuses on the significance of enhancing agricultural statistical service quality under the backdrop of rural revitalization.It addresses current issues such as inadequate implementation of agricultural statistical survey systems,an imperfect data quality control system,and a shortage of statistical service personnel.Proposals are made to improve the statistical survey system,enhance the data quality control framework,and strengthen personnel training.These pathways offer references for elevating the quality of agricultural statistical services and implementing the rural revitalization strategy in the new era. 展开更多
关键词 Rural revitalization Agricultural statistical services Pathway study
下载PDF
Improving Statistical Literacy through Evidence-Based Strategies Among First-Year Education Students in a State University
14
作者 Israel M.Castillo 《Journal of Contemporary Educational Research》 2024年第1期246-259,共14页
Statistical literacy is crucial for cultivating well-rounded thinkers.The integration of evidence-based strategies in teaching and learning is pivotal for enhancing students’statistical literacy.This research specifi... Statistical literacy is crucial for cultivating well-rounded thinkers.The integration of evidence-based strategies in teaching and learning is pivotal for enhancing students’statistical literacy.This research specifically focuses on the utilization of Share and Model Concepts and Nurturing Metacognition as evidence-based strategies aimed at improving the statistical literacy of learners.The study employed a quasi-experimental design,specifically the nonequivalent control group,wherein students answered pre-test and post-test instruments and researcher-made questionnaires.The study included 50 first-year Bachelor in Secondary Education majors in Mathematics and Science for the academic year 2023-2024.The results of the study revealed a significant difference in the scores of student respondents,indicating that the use of evidence-based strategies helped students enhance their statistical literacy.This signifies a noteworthy increase in their performance,ranging from very low to very high proficiency in understanding statistical concepts,insights into the application of statistical concepts,numeracy,graph skills,interpretation capabilities,and visualization and communication skills.Furthermore,the study showed a significant difference in the post-test scores’performance of the two groups in understanding statistical concepts and visualization and communication skills.However,no significant difference was found in the post-test scores of the two groups concerning insights into the application of statistical concepts,numeracy and graph skills,and interpretation capabilities.Additionally,students acknowledged that the implementation of evidence-based strategies significantly contributed to the improvement of their statistical literacy. 展开更多
关键词 statistical literacy Evidence-based strategies Share and model concepts Nurturing metacognition Quasiexperimental
下载PDF
The impact of genotyping strategies and statistical models on accuracy of genomic prediction for survival in pigs 被引量:1
15
作者 Tianfei Liu Bjarne Nielsen +2 位作者 Ole F.Christensen Mogens SandøLund Guosheng Su 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第3期908-916,共9页
Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore ... Background:Survival from birth to slaughter is an important economic trait in commercial pig productions.Increasing survival can improve both economic efficiency and animal welfare.The aim of this study is to explore the impact of genotyping strategies and statistical models on the accuracy of genomic prediction for survival in pigs during the total growing period from birth to slaughter.Results:We simulated pig populations with different direct and maternal heritabilities and used a linear mixed model,a logit model,and a probit model to predict genomic breeding values of pig survival based on data of individual survival records with binary outcomes(0,1).The results show that in the case of only alive animals having genotype data,unbiased genomic predictions can be achieved when using variances estimated from pedigreebased model.Models using genomic information achieved up to 59.2%higher accuracy of estimated breeding value compared to pedigree-based model,dependent on genotyping scenarios.The scenario of genotyping all individuals,both dead and alive individuals,obtained the highest accuracy.When an equal number of individuals(80%)were genotyped,random sample of individuals with genotypes achieved higher accuracy than only alive individuals with genotypes.The linear model,logit model and probit model achieved similar accuracy.Conclusions:Our conclusion is that genomic prediction of pig survival is feasible in the situation that only alive pigs have genotypes,but genomic information of dead individuals can increase accuracy of genomic prediction by 2.06%to 6.04%. 展开更多
关键词 Genomic prediction Genotyping strategy Simulation statistical models SURVIVAL
下载PDF
On a New Version of Weibull Model:Statistical Properties,Parameter Estimation and Applications 被引量:1
16
作者 Hassan Okasha Mazen Nassar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2219-2241,共23页
In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then... In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution. 展开更多
关键词 Weibull distribution alpha power transformation method maximum likelihood ENTROPY order statistics
下载PDF
Statistical Properties of Alfvén Ion Cyclotron Waves and Kinetic Alfvén Waves in the Inner Heliosphere
17
作者 Chang Sun Lei Yang +4 位作者 Qiu-Huan Li Cun-Li Dai Jian-Ping Li Zheng-Wei Cheng De-Jin Wu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第9期341-350,共10页
Alfvén ion cyclotron waves(ACWs)and kinetic Alfvén waves(KAWs)are found to exist at<0.3 au observed by Parker Solar Probe in Alfvénic slow solar winds.To examine the statistical properties of the bac... Alfvén ion cyclotron waves(ACWs)and kinetic Alfvén waves(KAWs)are found to exist at<0.3 au observed by Parker Solar Probe in Alfvénic slow solar winds.To examine the statistical properties of the background parameters for ACWs and KAWs and related wave disturbances,both wave events observed by Parker Solar Probe are selected and analyzed.The results show that there are obvious differences in the background and disturbance parameters between ACWs and KAWs.ACW events have a relatively higher occurrence rate but with a total duration slightly shorter than KAW events.The median background magnetic field magnitude and the related background solar wind speed of KAW events are larger than those of ACWs.The distributions of the relative disturbances of the proton velocity,proton temperature,the proton number density,andβcover wider ranges for ACW events than for KAW events.The results may be important for the understanding of the nature and characteristics of Alfvénic slow solar wind fluctuations at ion scales near the Sun,and provide the information of the background field and plasma parameters and the wave disturbances of ACWs and KAWs for further relevant theoretical modeling or numerical simulations. 展开更多
关键词 (Sun )solar wind-plasmas-waves-methods statistical
下载PDF
A Comprehensive Guide for Selecting Appropriate Statistical Tests: Understanding When to Use Parametric and Nonparametric Tests
18
作者 Saed Jama Abdi 《Open Journal of Statistics》 2023年第4期464-474,共11页
Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Kn... Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated. 展开更多
关键词 statistical Tests Levels of Measurement PARAMETRIC NONPARAMETRIC Normal Distribution
下载PDF
A Comprehensive Guide for Selecting Appropriate Statistical Tests: Understanding When to Use Parametric and Nonparametric Tests
19
作者 Saed Jama Abdi 《Open Journal of Endocrine and Metabolic Diseases》 2023年第4期464-474,共11页
Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Kn... Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated. 展开更多
关键词 statistical Tests Levels of Measurement PARAMETRIC NONPARAMETRIC Normal Distribution
下载PDF
Statistical Learning in Game Theory
20
作者 Luyuan Shi 《Journal of Applied Mathematics and Physics》 2023年第3期663-669,共7页
In economics, buyers and sellers are usually the main sides in a market. Game theory can perfectly model decisions behind each “player” and calculate an outcome that benefits both sides. However, the use of game the... In economics, buyers and sellers are usually the main sides in a market. Game theory can perfectly model decisions behind each “player” and calculate an outcome that benefits both sides. However, the use of game theory is not lim-ited to economics. In this paper, I will introduce the mathematical model of general sum game, solutions and theorems surrounding game theory, and its real life applications in many different scenarios. 展开更多
关键词 General-Sum Games Nash Equilibrium Minimax Theorem statistical Learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部