Texture analysis methods have been used in a variety of applications, for instance in remote sensing. Though widely used in electrical engineering, its application in atmospheric sciences is still limited. This paper ...Texture analysis methods have been used in a variety of applications, for instance in remote sensing. Though widely used in electrical engineering, its application in atmospheric sciences is still limited. This paper reviews some concepts of digital texture and statistical texture approach, applying them to a set of specific maps to analyze the correlation between texture measurements used in most papers. It is also proposed an improvement of the method by setting free a distance parameter and the use of a new texture measurement based on the Kullback-Leibler divergence. Eight statistical measurements were used: mean, contrast, standard deviation, cluster shade, cluster prominence, angular second moment, local homogeneity and Shannon entropy. The above statistical measurements were applied to simple maps and a set of rainfall fields measured with weather radar. The results indicate some high correlations, e.g. between the mean and the contrast or between the angular second moment, local homogeneity and the Shannon entropy, besides the potentiality of the method to discriminate maps.展开更多
Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the graysc...Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the grayscale differences of them are not so apparent.In this paper a new textural characteristic space vector was formed by the combination of Co-occurrence Matrix and fraction methods.The vector was projected to the new characteristic space after multiplied by a projective matrix which can best classify those plaques according to the Fisher linear discriminant.Then the classification was completed in the new vector space.Experimental results found that the veracity of this classification could reach up to 88%,which would be an accessorial tool for doctors to identify each plaque.展开更多
The problem of recognizing natural scenes, such as water, smoke, fire, wind-blown vegetation and a flock of flying birds, is considered. These scenes exhibit the characteristic dynamic pattern, but have stochastic ext...The problem of recognizing natural scenes, such as water, smoke, fire, wind-blown vegetation and a flock of flying birds, is considered. These scenes exhibit the characteristic dynamic pattern, but have stochastic extent. They are referred to as dynamic texture(DT). In reality, the diversity of DTs on different viewpoints and scales are very common, which also bring great difficulty to recognize DTs. In the previous studies, due to no considering of the deformable and transient nature of elements in DT, the motion estimation method is based on brightness constancy assumption,which seem inappropriate for aggregate and complex motions. A novel motion model based on relative motion in the neighborhood of two-dimensional motion fields is proposed. The estimation of non-rigid motion of DTs is based on the continuity equation, and then the local vector difference(LVD) is proposed to characterize DT local relative motion. Spatiotemporal statistics of the LVDs is used as the representation of DT sequences. Excellent performances of classifying all DTs in UCLA database demonstrate the capability of the proposed method in describing DT.展开更多
With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain s...With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.展开更多
Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing...Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.展开更多
Due to the influence of complex working environment and artificial factors,it is easy to cause crop up over or less tillage problem when straw returning machine is working in paddy field.A new method for path detectio...Due to the influence of complex working environment and artificial factors,it is easy to cause crop up over or less tillage problem when straw returning machine is working in paddy field.A new method for path detection suitable for rice,rape and wheat high crop stubble tilling environments was proposed.First the distribution characteristics of rice,rape and wheat high crop stubble images in paddy field based on RGB color model were analyzed,and rice,the color images of rape and wheat high crop stubble were converted into gray ones using custom factor combination R+G-2B;Then,the gray images of rice,rape and wheat high crop stubble were segmented from soil background by means of luminance mean texture descriptor;Next,the binary image through custom shear-binary-image algorithm was cut to remove big noise blobs in high crop stubble’s tilled area;Finally,navigation path from navigation points by using the least square method was derived.The experimental results indicated that the navigation path detection algorithm was fast and effective to obtain navigation path in rice,rape and wheat high crop stubble tilling environments with up to 96.7% of segmentation accuracy within 0.6 s of processing time.展开更多
文摘Texture analysis methods have been used in a variety of applications, for instance in remote sensing. Though widely used in electrical engineering, its application in atmospheric sciences is still limited. This paper reviews some concepts of digital texture and statistical texture approach, applying them to a set of specific maps to analyze the correlation between texture measurements used in most papers. It is also proposed an improvement of the method by setting free a distance parameter and the use of a new texture measurement based on the Kullback-Leibler divergence. Eight statistical measurements were used: mean, contrast, standard deviation, cluster shade, cluster prominence, angular second moment, local homogeneity and Shannon entropy. The above statistical measurements were applied to simple maps and a set of rainfall fields measured with weather radar. The results indicate some high correlations, e.g. between the mean and the contrast or between the angular second moment, local homogeneity and the Shannon entropy, besides the potentiality of the method to discriminate maps.
文摘Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the grayscale differences of them are not so apparent.In this paper a new textural characteristic space vector was formed by the combination of Co-occurrence Matrix and fraction methods.The vector was projected to the new characteristic space after multiplied by a projective matrix which can best classify those plaques according to the Fisher linear discriminant.Then the classification was completed in the new vector space.Experimental results found that the veracity of this classification could reach up to 88%,which would be an accessorial tool for doctors to identify each plaque.
基金supported by the National Natural Science Foundation of China(41504115)the Shaanxi Province Natural Science Foundation(2015JQ6223)+2 种基金the Foundation of Strengthening Police Science and Technology from Ministry of Public Security(2015GABJC50)the International Technology Cooperation Plan Project of Shaanxi Province(2015KW-0142015KW-013)
文摘The problem of recognizing natural scenes, such as water, smoke, fire, wind-blown vegetation and a flock of flying birds, is considered. These scenes exhibit the characteristic dynamic pattern, but have stochastic extent. They are referred to as dynamic texture(DT). In reality, the diversity of DTs on different viewpoints and scales are very common, which also bring great difficulty to recognize DTs. In the previous studies, due to no considering of the deformable and transient nature of elements in DT, the motion estimation method is based on brightness constancy assumption,which seem inappropriate for aggregate and complex motions. A novel motion model based on relative motion in the neighborhood of two-dimensional motion fields is proposed. The estimation of non-rigid motion of DTs is based on the continuity equation, and then the local vector difference(LVD) is proposed to characterize DT local relative motion. Spatiotemporal statistics of the LVDs is used as the representation of DT sequences. Excellent performances of classifying all DTs in UCLA database demonstrate the capability of the proposed method in describing DT.
文摘With the increasing popularity of high-resolution remote sensing images,the remote sensing image retrieval(RSIR)has always been a topic of major issue.A combined,global non-subsampled shearlet transform(NSST)-domain statistical features(NSSTds)and local three dimensional local ternary pattern(3D-LTP)features,is proposed for high-resolution remote sensing images.We model the NSST image coefficients of detail subbands using 2-state laplacian mixture(LM)distribution and its three parameters are estimated using Expectation-Maximization(EM)algorithm.We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband,and concatenate all of them with the 2-state LM parameters to describe the global features of the image.The various properties of NSST such as multiscale,localization and flexible directional sensitivity make it a suitable choice to provide an effective approximation of an image.In order to extract the dense local features,a new 3D-LTP is proposed where dimension reduction is performed via selection of‘uniform’patterns.The 3D-LTP is calculated from spatial RGB planes of the input image.The proposed inter-channel 3D-LTP not only exploits the local texture information but the color information is captured too.Finally,a fused feature representation(NSSTds-3DLTP)is proposed using new global(NSSTds)and local(3D-LTP)features to enhance the discriminativeness of features.The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote sensing image datasets such as WHU-RS19,Aerial Image Dataset(AID)and PatternNet in terms of mean average precision(MAP),average normalized modified retrieval rank(ANMRR)and precision-recall(P-R)graph.The experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance compared to many well known existing descriptors such as Gabor RGB,Granulometry,local binary pattern(LBP),Fisher vector(FV),vector of locally aggregated descriptors(VLAD)and median robust extended local binary pattern(MRELBP).For WHU-RS19 dataset,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{41.93%,20.87%},{92.30%,32.68%},{86.14%,31.97%},{18.18%,15.22%},{8.96%,19.60%}and{15.60%,13.26%},respectively.For AID,in terms of{MAP,ANMRR},the NSSTds-3DLTP improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{152.60%,22.06%},{226.65%,25.08%},{185.03%,23.33%},{80.06%,12.16%},{50.58%,10.49%}and{62.34%,3.24%},respectively.For PatternNet,the NSSTds-3DLTP respectively improves upon Gabor RGB,Granulometry,LBP,FV,VLAD and MRELBP descriptors by{32.79%,10.34%},{141.30%,24.72%},{17.47%,10.34%},{83.20%,19.07%},{21.56%,3.60%},and{19.30%,0.48%}in terms of{MAP,ANMRR}.The moderate dimensionality of simple NSSTds-3DLTP allows the system to run in real-time.
文摘Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201203059)the Natural Science Foundation of China(No.51275196).
文摘Due to the influence of complex working environment and artificial factors,it is easy to cause crop up over or less tillage problem when straw returning machine is working in paddy field.A new method for path detection suitable for rice,rape and wheat high crop stubble tilling environments was proposed.First the distribution characteristics of rice,rape and wheat high crop stubble images in paddy field based on RGB color model were analyzed,and rice,the color images of rape and wheat high crop stubble were converted into gray ones using custom factor combination R+G-2B;Then,the gray images of rice,rape and wheat high crop stubble were segmented from soil background by means of luminance mean texture descriptor;Next,the binary image through custom shear-binary-image algorithm was cut to remove big noise blobs in high crop stubble’s tilled area;Finally,navigation path from navigation points by using the least square method was derived.The experimental results indicated that the navigation path detection algorithm was fast and effective to obtain navigation path in rice,rape and wheat high crop stubble tilling environments with up to 96.7% of segmentation accuracy within 0.6 s of processing time.