期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An optimal filter based MPC for systems with arbitrary disturbances 被引量:1
1
作者 Haokun Wang Zuhua Xu +1 位作者 Jun Zhao Aipeng Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期632-640,共9页
In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the fram... In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics. 展开更多
关键词 Model predictive control Optimal filter Disturbance modeling Disturbance statistics Unmeasured disturbances
下载PDF
Research on fault detection method for heat pump air conditioning system under cold weather 被引量:6
2
作者 Liangliang Sun Jianghua Wu +1 位作者 Haiqi Jia Xuebin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1812-1819,共8页
Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, t... Building energy consumption accounts for nearly 40% of global energy consumption, HVAC (Heating, Ventilating, and Air Conditioning) systems are the major building energy consumers, and as one type of HVAC systems, the heat pump air conditioning system, which is more energy-efficient compared to the traditional air conditioning system, is being more widely used to save energy. However, in northern China, extreme climatic conditions increase the cooling and heating load of the heat pump air conditioning system and accelerate the aging of the equipment, and the sensor may detect drifted parameters owing to climate change. This non-linear drifted parameter increases the false alarm rate of the fault detection and the need for unnecessary troubleshooting. In order to overcome the impact of the device aging and the drifted parameter, a Kalman filter and SPC (statistical process control) fault detection method are introduced in this paper. In this method, the model parameter and its standard variance can he estimated by Kalman filter based on the gray model and the real-time data of the air conditioning system. Further, by using SPC to construct the dynamic control limits, false alarm rate is reduced. And this paper mainly focuses on the cold machine failure in the component failure and its soft fault detection. This approach has been tested on a simulation model of the "Sino-German Energy Conservation Demonstration Center" building heat pump air-conditioning system in Shenyang, China, and the results show that the Kalman filter and SPC fault detection method is simple and highly efficient with a low false alarm rate, and it can deal with the difficulties caused by the extreme environment and the non-linear influence of the parameters, and what's more, it provides a good foundation for dynamic fault diagnosis and fault prediction analysis. 展开更多
关键词 Fault detection Cold machine Kalman filter Statistical process control Dynamic control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部