This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstr...This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.展开更多
The dynamic transfer mechanism of the traveling wave rotary ultrasonic motor rotor-stator’ s contact surface is studied in the paper and the key parts stator and cone flexible rotor of ultrasonic motor are designed.T...The dynamic transfer mechanism of the traveling wave rotary ultrasonic motor rotor-stator’ s contact surface is studied in the paper and the key parts stator and cone flexible rotor of ultrasonic motor are designed.The three-dimensional contact model and finite element model considering the radial sliding between the rotor and the stator are established. The relation between the stator surface particle that amplitude frequency characteristics,resonance speed,radial displacement of ultrasonic motor and the tooth height are analyzed. Mass point radial relative displacement of contact surface between the cone flexible rotor,flexible rotor and the stator are contrasted. The cone flexible rotor is better placed on the surface of the stator tooth through its elastic deformation is interpreted. The cone flexible rotor reduces the radial slip between the stator and the output efficiency of ultrasonic motor is improved. The displacement trajectory of the stator surface is synthesized in a row wave cycle. The method of the stator mass point elliptical motion drives the rotor rotation is verified.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
In this paper,a novel bipolar transverse flux motor with stator permanent magnet excitation is proposed based on the summary and analysis of the transverse flux motor and stator permanent magnet motor research achieve...In this paper,a novel bipolar transverse flux motor with stator permanent magnet excitation is proposed based on the summary and analysis of the transverse flux motor and stator permanent magnet motor research achievements in recent years.It has been shown that the motor realizes the bipolar winding flux through the detailed analysis.The motor can be used as an inwheel motor in electric vehicles because of its external rotor and permanent magnets mounted on the stator radial surface.Secondly the basic structure and working principle of the motor are introduced.Then the relationship between the motor power and its dimensions is deduced.Thirdly the 3 dimensional finite element method(3D FEM)is used to analyze the static and transient characteristics,including the no-load magnetic field distribution and winding back EMF.Finally a three-phase 600W prototype has been made and the experimental analysis is carried out.展开更多
When designing a universal finite element software for analyzing a permanent magnet synchronous motor,the relative position of the stator and rotor remains unknown.However,determining the relative position is a precon...When designing a universal finite element software for analyzing a permanent magnet synchronous motor,the relative position of the stator and rotor remains unknown.However,determining the relative position is a precondition for electromagnetic field calculation.Through analyzing the basic relationship of variables in a synchronous machine,the characteristics of an air-gap-resultant electromotive force and an inner power angle under a special inner power factor angle are obtained.A method similar to inverse problem solving is proposed.A series of electromagnetic field calculation under different armature current initial phase angles are carried out,and through searching the field of a special inner power factor angle,the relative position of the rotor and the stator can be determined subsequently.展开更多
The aim of this paper is to present the eddy current losses in solid pole shoes in a permanent magnet two-pole electric motor. In the presented paper, the authors have chosen to work with three different analytical mo...The aim of this paper is to present the eddy current losses in solid pole shoes in a permanent magnet two-pole electric motor. In the presented paper, the authors have chosen to work with three different analytical models, Carter’s theory, Gibb’s theory and Lawrenson’s theory, each with different degree of accuracy and simplifications. The results from the analytical models all present relatively low eddy current losses, giving the designer valuable arguments to utilize solid pole shoes, as a rotor with solid poles is from a construction point of view a more suitable choice, increasing the mechanical stability and reducing the production cost, compared to the laminated design.展开更多
文摘This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.
文摘The dynamic transfer mechanism of the traveling wave rotary ultrasonic motor rotor-stator’ s contact surface is studied in the paper and the key parts stator and cone flexible rotor of ultrasonic motor are designed.The three-dimensional contact model and finite element model considering the radial sliding between the rotor and the stator are established. The relation between the stator surface particle that amplitude frequency characteristics,resonance speed,radial displacement of ultrasonic motor and the tooth height are analyzed. Mass point radial relative displacement of contact surface between the cone flexible rotor,flexible rotor and the stator are contrasted. The cone flexible rotor is better placed on the surface of the stator tooth through its elastic deformation is interpreted. The cone flexible rotor reduces the radial slip between the stator and the output efficiency of ultrasonic motor is improved. The displacement trajectory of the stator surface is synthesized in a row wave cycle. The method of the stator mass point elliptical motion drives the rotor rotation is verified.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
基金Supported by the Anhui Natural Science Foundation of China(1508085ME87)Natural Science Foundation of Hefei University(06KY010ZR).
文摘In this paper,a novel bipolar transverse flux motor with stator permanent magnet excitation is proposed based on the summary and analysis of the transverse flux motor and stator permanent magnet motor research achievements in recent years.It has been shown that the motor realizes the bipolar winding flux through the detailed analysis.The motor can be used as an inwheel motor in electric vehicles because of its external rotor and permanent magnets mounted on the stator radial surface.Secondly the basic structure and working principle of the motor are introduced.Then the relationship between the motor power and its dimensions is deduced.Thirdly the 3 dimensional finite element method(3D FEM)is used to analyze the static and transient characteristics,including the no-load magnetic field distribution and winding back EMF.Finally a three-phase 600W prototype has been made and the experimental analysis is carried out.
文摘When designing a universal finite element software for analyzing a permanent magnet synchronous motor,the relative position of the stator and rotor remains unknown.However,determining the relative position is a precondition for electromagnetic field calculation.Through analyzing the basic relationship of variables in a synchronous machine,the characteristics of an air-gap-resultant electromotive force and an inner power angle under a special inner power factor angle are obtained.A method similar to inverse problem solving is proposed.A series of electromagnetic field calculation under different armature current initial phase angles are carried out,and through searching the field of a special inner power factor angle,the relative position of the rotor and the stator can be determined subsequently.
文摘The aim of this paper is to present the eddy current losses in solid pole shoes in a permanent magnet two-pole electric motor. In the presented paper, the authors have chosen to work with three different analytical models, Carter’s theory, Gibb’s theory and Lawrenson’s theory, each with different degree of accuracy and simplifications. The results from the analytical models all present relatively low eddy current losses, giving the designer valuable arguments to utilize solid pole shoes, as a rotor with solid poles is from a construction point of view a more suitable choice, increasing the mechanical stability and reducing the production cost, compared to the laminated design.