On the basis of expounding the corrosion mechanism of the stator hollow copper conductor in the water-cooling generator, methods of preventing corrosion of the stator hollow copper conductor in the wa-ter-cooling gene...On the basis of expounding the corrosion mechanism of the stator hollow copper conductor in the water-cooling generator, methods of preventing corrosion of the stator hollow copper conductor in the wa-ter-cooling generator through adjusting water quality of its cooling water have been proposed. For internal water cooling systems which are airtight, the corrosion of the hollow copper conductor can be prevented through keeping foreign oxygen and carbon dioxide from entering the system, and the amount of oxygen in the internal water can be lowered by blowing high purity nitrogen. For systems not airtight, the corrosion of the hollow copper conductor can be inhibited through lowering the amount of oxygen to some extent by sealing and increasing pH value by processing part of cooling water with bypass small flow sodium-type mix-bed.展开更多
The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasing...The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasingly identified as a potential security risk for GICW system.In this paper,the influence of CO_(2) inleakage on the slight-alkalization of GICW was theoretically discussed.Based on the equilibriums of the CO_(2)-NaOH-H_(2)O system,CO_(2) inleakage saturation was derived to quantify the amount of the dissolved CO_(2) in GICW.This parameter can be directly calculated with the measured conductivity and the[Na+]of GICW.The influence of CO_(2) inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed.The more severe the inleakage,the narrower the water quality operation ranges of GICW,resulting in the more difficult the slight-alkalization conditioning of GICW.The temperature calibrations of the conductivity and the pH value of GICW show nonlinear correlations with the amount of CO_(2) inleakage and the NaOH dosage.This study provides insights into the influence of CO_(2) inleakage on the slight-alkalization of GICW,which can serve as the theoretical basis for the actual slight-alkalization when CO_(2) inleakage occurs.展开更多
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord...In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.展开更多
文摘On the basis of expounding the corrosion mechanism of the stator hollow copper conductor in the water-cooling generator, methods of preventing corrosion of the stator hollow copper conductor in the wa-ter-cooling generator through adjusting water quality of its cooling water have been proposed. For internal water cooling systems which are airtight, the corrosion of the hollow copper conductor can be prevented through keeping foreign oxygen and carbon dioxide from entering the system, and the amount of oxygen in the internal water can be lowered by blowing high purity nitrogen. For systems not airtight, the corrosion of the hollow copper conductor can be inhibited through lowering the amount of oxygen to some extent by sealing and increasing pH value by processing part of cooling water with bypass small flow sodium-type mix-bed.
文摘The slight-alkalization of generator internal cooling water(GICW)is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator.CO_(2) inleakage is increasingly identified as a potential security risk for GICW system.In this paper,the influence of CO_(2) inleakage on the slight-alkalization of GICW was theoretically discussed.Based on the equilibriums of the CO_(2)-NaOH-H_(2)O system,CO_(2) inleakage saturation was derived to quantify the amount of the dissolved CO_(2) in GICW.This parameter can be directly calculated with the measured conductivity and the[Na+]of GICW.The influence of CO_(2) inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed.The more severe the inleakage,the narrower the water quality operation ranges of GICW,resulting in the more difficult the slight-alkalization conditioning of GICW.The temperature calibrations of the conductivity and the pH value of GICW show nonlinear correlations with the amount of CO_(2) inleakage and the NaOH dosage.This study provides insights into the influence of CO_(2) inleakage on the slight-alkalization of GICW,which can serve as the theoretical basis for the actual slight-alkalization when CO_(2) inleakage occurs.
基金funded by the National Natural Science Foundation of China(Nos.51974213 and 52174324)。
文摘In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction.