The principal resonance of Van der Pol-Duffing oscillator to combined deterministic and random parametric excitations is investigated. The method of multiple scales was used to determine the equations of modulation of...The principal resonance of Van der Pol-Duffing oscillator to combined deterministic and random parametric excitations is investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied. Jumps were shown to occur under some conditions. The effects of damping, detuning, bandwidth, and magnitudes of deterministic and random excitations are analyzed. The theoretical analysis were verified by numerical results.展开更多
The phenomenon of stochastic bifurcation driven by the correlated non-Gaussian colored noise and the Gaussian white noise is investigated by the qualitative changes of steady states with the most probable phase portra...The phenomenon of stochastic bifurcation driven by the correlated non-Gaussian colored noise and the Gaussian white noise is investigated by the qualitative changes of steady states with the most probable phase portraits.To arrive at the Markovian approximation of the original non-Markovian stochastic process and derive the general approximate Fokker-Planck equation(FPE),we deal with the non-Gaussian colored noise and then adopt the unified colored noise approximation(UCNA).Subsequently,the theoretical equation concerning the most probable steady states is obtained by the maximum of the stationary probability density function(SPDF).The parameter of the uncorrelated additive noise intensity does enter the governing equation as a non-Markovian effect,which is in contrast to that of the uncorrelated Gaussian white noise case,where the parameter is absent from the governing equation,i.e.,the most probable steady states are mainly controlled by the uncorrelated multiplicative noise.Additionally,in comparison with the deterministic counterpart,some peculiar bifurcation behaviors with regard to the most probable steady states induced by the correlation time of non-Gaussian colored noise,the noise intensity,and the non-Gaussian noise deviation parameter are discussed.Moreover,the symmetry of the stochastic bifurcation diagrams is destroyed when the correlation between noises is concerned.Furthermore,the feasibility and accuracy of the analytical predictions are verified compared with those of the Monte Carlo(MC)simulations of the original system.展开更多
文摘The principal resonance of Van der Pol-Duffing oscillator to combined deterministic and random parametric excitations is investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied. Jumps were shown to occur under some conditions. The effects of damping, detuning, bandwidth, and magnitudes of deterministic and random excitations are analyzed. The theoretical analysis were verified by numerical results.
文摘The phenomenon of stochastic bifurcation driven by the correlated non-Gaussian colored noise and the Gaussian white noise is investigated by the qualitative changes of steady states with the most probable phase portraits.To arrive at the Markovian approximation of the original non-Markovian stochastic process and derive the general approximate Fokker-Planck equation(FPE),we deal with the non-Gaussian colored noise and then adopt the unified colored noise approximation(UCNA).Subsequently,the theoretical equation concerning the most probable steady states is obtained by the maximum of the stationary probability density function(SPDF).The parameter of the uncorrelated additive noise intensity does enter the governing equation as a non-Markovian effect,which is in contrast to that of the uncorrelated Gaussian white noise case,where the parameter is absent from the governing equation,i.e.,the most probable steady states are mainly controlled by the uncorrelated multiplicative noise.Additionally,in comparison with the deterministic counterpart,some peculiar bifurcation behaviors with regard to the most probable steady states induced by the correlation time of non-Gaussian colored noise,the noise intensity,and the non-Gaussian noise deviation parameter are discussed.Moreover,the symmetry of the stochastic bifurcation diagrams is destroyed when the correlation between noises is concerned.Furthermore,the feasibility and accuracy of the analytical predictions are verified compared with those of the Monte Carlo(MC)simulations of the original system.