A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-s...A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.展开更多
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with t...The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.展开更多
Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colo...Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, TSK-Gel DEAE-5PW and Superdex-200. The novel peroxidase was characterized as having a molecular weight of 48.2 ± 3.0 kDa and an isoelectric point pI 5.4 ± 0.1. The enzyme forms dimers in solution with approximate molecular weight of 92 ± 2 kDa. Here we investigated the steady-state kinetic mechanism of the H2O2-supported oxidation of different organic substrates by RPTP. The results of the analysis of the initial rates vs. H2O2 and reducing substrate concentrations were seen to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach used expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O2, KSIAH2 and of the microscopic rate constants k1 and k3 of the shared three-step peroxidase catalytic cycle. Furthermore, the concentration and time-dependences and the mechanism of the suicide inactivation of RPTP by hydrogen peroxide were studied kinetically with guaiacol as co-substrate. The turnover number (r) of H2O2 required to complete the inactivation of the enzyme was 2154 ± 100 and the apparent rate constants of catalysis 185 s–1 and 18 s–1.展开更多
This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribut...This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribution function(EEDF)of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied.The results show that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front splits into two parts in the cathode cavity while propagating along its lateral surfaces.The ionization front formation leads to an increase in the fast isotropic EEDF component at its front,as well as in the anisotropic EEDF component.The accelerated electrons enter the cathode cavity,which significantly contributes to the formation of the highenergy EEDF component and EEDF anisotropy.展开更多
The attitude control problem of the kinetic kill vehicle is studied in this work. A new mathematical model of the kinetic kill vehicle is proposed, the linear quadratic regulator technique is used to design the optima...The attitude control problem of the kinetic kill vehicle is studied in this work. A new mathematical model of the kinetic kill vehicle is proposed, the linear quadratic regulator technique is used to design the optimal attitude controller, and the pulse-width pulse-frequency modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the reaction thrusters. The methods to select the appropriate parameters of pulse-width pulse-frequency are presented in detail. Numerical simulations show that the performance of the LQR/PWPF approach can achieve good control performance such as pseudo-linear operation, high accuracy, and fast enough tracking speed.展开更多
The guidance and control strategy for endoatmospheric kinetic interceptor controlled by lateral pulse thrusters was detailed.The pulse thruster control system was firstly proposed.The sample-and-hold approach was intr...The guidance and control strategy for endoatmospheric kinetic interceptor controlled by lateral pulse thrusters was detailed.The pulse thruster control system was firstly proposed.The sample-and-hold approach was introduced to design a novel lateral acceleration autopilot on the basis of traditional two-loop topology.Combined with proportional navigation guidance law and the novel autopilot,the overall ballistic trajectory was presented and examined.Simulation results show that the pulse thruster control strategy can greatly improve the control system response speed and the maximal acceleration capability for realizing kinetic kill interception.展开更多
A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial ...A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial p H value and initial water content of the soil.Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants(k values) were calculated.The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well.Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation.A higher k value could be achieved in the lower initial pyrene content(the value was 100 mg kg^-1).The k value of pyrene oxidation in the case of p H=4 was 11.2 times higher than the value obtained under the condition of p H=9,while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP.展开更多
The dismutation kinetics of superoxide anion by copper complex of 1,4,7,10-tetranza- cyctotridecane-11,13-dione was studied by pulse radiolysis.The dismutation rate constants at various pH and concentration of complex...The dismutation kinetics of superoxide anion by copper complex of 1,4,7,10-tetranza- cyctotridecane-11,13-dione was studied by pulse radiolysis.The dismutation rate constants at various pH and concentration of complex were obtained.展开更多
Considering the characteristics of perovskite structure, a kinetic Monte Carlo(KMC) model, in which Born-Mayer- Huggins(BMH) potential was introduced to calculate the interatomic interactions and the bonding ratio was...Considering the characteristics of perovskite structure, a kinetic Monte Carlo(KMC) model, in which Born-Mayer- Huggins(BMH) potential was introduced to calculate the interatomic interactions and the bonding ratio was defined to reflect the crystallinity, was developed to simulate the growth of BaTiO3 thin film via pulsed laser deposition(PLD). Not only the atoms deposition and adatoms diffusion, but also the bonding of adatoms were considered distinguishing with the traditional algorithm. The effects of substrate temperature, laser pulse repetition rate and incident kinetic energy on BaTiO3 thin film growth were investigated at submonolayer regime. The results show that the island density decreases and the bonding ratio increases with the increase of substrate temperature from 700 to 850 K. With the laser pulse repetition rate increasing, the island density decreases while the bonding ratio increases. With the incident kinetic energy increasing, the island density decreases except 6.2 eV<Ek<9.6 eV, and the bonding ratio increases at Ek<9.6 eV. The simulation results were discussed compared with the previous experimental results.展开更多
Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturba...Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. In. situ Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using AlZr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix. Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication.展开更多
The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The e...The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements,展开更多
Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hy- drated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and n...Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hy- drated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and neu- tral radicals, respectively, and the related rate constants have been determined.展开更多
Dihydroflavonol 4-reductase (DFR), a member of the short-chain dehydrogenase family, catalyzes the last common step in the biosynthesis of flavan-3-ols and condensed tannins. Initial rates of DFR were measured by moni...Dihydroflavonol 4-reductase (DFR), a member of the short-chain dehydrogenase family, catalyzes the last common step in the biosynthesis of flavan-3-ols and condensed tannins. Initial rates of DFR were measured by monitoring the 340-nm absorbance decrease resulting from the joint consumption of dihydroquercetin (DHQ) and NADPH, as a function of pH, temperature and ionic strength. At pH 6.5 and 30o C, substrate inhibition was observed above 30 μM DHQ. At lower/non-inhibitory DHQ concentrations, NADP+ behaves as a competitive inhibitor with respect to NADPH and as a mixed inhibitor with respect to DHQ, which supports a sequential ordered mechanism, with NADPH binding first and NADP+ released last. Binding-equilib-rium data obtained by means of the chromatographic method of Hummel and Dreyer at pH 7.5 and by isothermal calorimetric titration at pH 6.5 led to the conclusion that ligands of the apoenzyme included NADPH, NADP+ and DHQ. The mechanism which best accounts for substrate inhibition at pH 6.5 in the absence of product involves the formation of a binary non-productive E.DHQ complex. Thus, a productive ternary complex cannot be formed when DHQ binds first. This mechanism of inhibition may prevent the accumulation of unstable leucoanthocyanidins within cells.展开更多
This work aimed to discuss effects of pulsed vacuum drying(PVD)at different temperatures(45°C,50°C,55°C and 60°C),vacuum durations(5 min,10 min and 15 min)and multi-stage heating on drying kinetics...This work aimed to discuss effects of pulsed vacuum drying(PVD)at different temperatures(45°C,50°C,55°C and 60°C),vacuum durations(5 min,10 min and 15 min)and multi-stage heating on drying kinetics,colour attributes,phenolic compounds and antioxidant capacity of chrysanthemum(Imperial chrysanthemum).Results indicated that successive temperature increase reduced the drying time and enhanced the drying rate and moisture diffusivity.Lower temperature(45°C)and the multi-stage(35°C-55°C-60°C)drying presented the superiority in the protection of color,preservation of phytochemical composition(chlorogenic acid,luteolin,total phenolic and total flavonoid content)and improvement of antioxidant capacity(DPPH and FRAP)of chrysanthemum,which was attributed to the low-oxygen drying environment and reduction of thermal degradation losses.Based on the results of drying efficiency and drying quality,the multi-stage heating(35°C-55°C-60°C)has the excellent potential to produce high-quality dried chrysanthemum on a commercial scale.展开更多
基金The National Natural Science Foundation of China(Project No.52102436)The Natural Science Foundation of Shanghai(Project No.23ZR1462700)+3 种基金The National Key Laboratory Open Fund for Strength and Structural Integrity(Project No.ASSIKFJJ202304006)The Shanghai Aerospace Science and Technology Innovation Fund(Project No.SAST2022-031)The National Key Laboratory of Space Intelligent Control(Project No.2023-JCJQ-LB-006-14)The Shanghai Key Laboratory of Spacecraft Mechanism(Project No.YY-F805202210025)。
文摘A new terminal guidance law is proposed based on a solid propellant pulse engine and an improved proportional navigation method to address the terminal guidance issue for kinetic interceptors.On this basis,the start-stop curve of the pulse motor during the terminal guidance process is designed,along with its start-up logic.The effectiveness of the proposed guidance strategy is verified through simulation.
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.
基金Supported by the National Sciences Fundation of China.
文摘The steady-state kinetics for complete oxidation of benzene over has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.
文摘Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, TSK-Gel DEAE-5PW and Superdex-200. The novel peroxidase was characterized as having a molecular weight of 48.2 ± 3.0 kDa and an isoelectric point pI 5.4 ± 0.1. The enzyme forms dimers in solution with approximate molecular weight of 92 ± 2 kDa. Here we investigated the steady-state kinetic mechanism of the H2O2-supported oxidation of different organic substrates by RPTP. The results of the analysis of the initial rates vs. H2O2 and reducing substrate concentrations were seen to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach used expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O2, KSIAH2 and of the microscopic rate constants k1 and k3 of the shared three-step peroxidase catalytic cycle. Furthermore, the concentration and time-dependences and the mechanism of the suicide inactivation of RPTP by hydrogen peroxide were studied kinetically with guaiacol as co-substrate. The turnover number (r) of H2O2 required to complete the inactivation of the enzyme was 2154 ± 100 and the apparent rate constants of catalysis 185 s–1 and 18 s–1.
基金supported by the Russian Foundation for Basic Research(No.20–32–90150)by State Assignment(No.FZNZ–2020–0002)。
文摘This article presents the 2D simulation results of a nanosecond pulsed hollow cathode discharge obtained through a combination of fluid and kinetic models.The spatio-temporal evolution of the electron energy distribution function(EEDF)of the plasma column and electrical characteristics of the nanosecond pulsed hollow cathode discharge at a gas pressure of 5 Torr are studied.The results show that the discharge development starts with the formation of an ionization front at the anode surface.The ionization front splits into two parts in the cathode cavity while propagating along its lateral surfaces.The ionization front formation leads to an increase in the fast isotropic EEDF component at its front,as well as in the anisotropic EEDF component.The accelerated electrons enter the cathode cavity,which significantly contributes to the formation of the highenergy EEDF component and EEDF anisotropy.
文摘The attitude control problem of the kinetic kill vehicle is studied in this work. A new mathematical model of the kinetic kill vehicle is proposed, the linear quadratic regulator technique is used to design the optimal attitude controller, and the pulse-width pulse-frequency modulator is used to shape the continuous control command to pulse or on-off signals to meet the requirements of the reaction thrusters. The methods to select the appropriate parameters of pulse-width pulse-frequency are presented in detail. Numerical simulations show that the performance of the LQR/PWPF approach can achieve good control performance such as pseudo-linear operation, high accuracy, and fast enough tracking speed.
基金Supported by the National Natural Science Foundation of China(61172182)
文摘The guidance and control strategy for endoatmospheric kinetic interceptor controlled by lateral pulse thrusters was detailed.The pulse thruster control system was firstly proposed.The sample-and-hold approach was introduced to design a novel lateral acceleration autopilot on the basis of traditional two-loop topology.Combined with proportional navigation guidance law and the novel autopilot,the overall ballistic trajectory was presented and examined.Simulation results show that the pulse thruster control strategy can greatly improve the control system response speed and the maximal acceleration capability for realizing kinetic kill interception.
基金Supported by National Natural Science Foundation of China(No.21207052)
文摘A pulsed discharge plasma(PDP) reactor with net anode and net cathode was established for investigating the pyrene degradation in soil under different pulse peak voltage,air flow rate,pyrene content in soil,initial p H value and initial water content of the soil.Pyrene oxidation within the 60 min discharge time was fitting according to the pseudo-first order equation and the corresponding reaction kinetics constants(k values) were calculated.The obtained results show that pyrene oxidation under all the different reaction conditions obeyed the pseudo-first order equation well.Higher pulsed peak voltage and appropriate air flow rate were in favor of the increase of reaction rate of pyrene oxidation.A higher k value could be achieved in the lower initial pyrene content(the value was 100 mg kg^-1).The k value of pyrene oxidation in the case of p H=4 was 11.2 times higher than the value obtained under the condition of p H=9,while the initial water content of the soil also has a large effect on the oxidation rate of pyrene due to the effect of PDP.
文摘The dismutation kinetics of superoxide anion by copper complex of 1,4,7,10-tetranza- cyctotridecane-11,13-dione was studied by pulse radiolysis.The dismutation rate constants at various pH and concentration of complex were obtained.
基金Projects(10472099 10672139) supported by the National Natural Science Foundation of China+2 种基金Project(207079) supported by the Key Project of Ministry of Education of PRCProject(05FJ2005) supported by Key Project of Scientific Technological Department of Hunan Province, ChinaProject(06A072) supported by the Key Project of Education Department of Hunan Province, China
文摘Considering the characteristics of perovskite structure, a kinetic Monte Carlo(KMC) model, in which Born-Mayer- Huggins(BMH) potential was introduced to calculate the interatomic interactions and the bonding ratio was defined to reflect the crystallinity, was developed to simulate the growth of BaTiO3 thin film via pulsed laser deposition(PLD). Not only the atoms deposition and adatoms diffusion, but also the bonding of adatoms were considered distinguishing with the traditional algorithm. The effects of substrate temperature, laser pulse repetition rate and incident kinetic energy on BaTiO3 thin film growth were investigated at submonolayer regime. The results show that the island density decreases and the bonding ratio increases with the increase of substrate temperature from 700 to 850 K. With the laser pulse repetition rate increasing, the island density decreases while the bonding ratio increases. With the incident kinetic energy increasing, the island density decreases except 6.2 eV<Ek<9.6 eV, and the bonding ratio increases at Ek<9.6 eV. The simulation results were discussed compared with the previous experimental results.
基金This work was financially supported by the Foundation for Key Program of the Ministry of Education of China (No.207038)the Technological Achievement Conversion Program of Jiangsu Province in China (No.BA2005054)+1 种基金the High Technology Research Program of Jiangsu Province (No.BG2005026)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (No. 05KJD450043).
文摘Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. In. situ Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using AlZr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix. Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB708612) and Natural Science Foundation for Young Scientists of Zhejiang Province, China (Grant No RC02069).Acknowledgment We would like to thank Dr Ling-wang Wang of the Computational Research Division at the Lawrence Berkeley National Lab and Dr Xiangrong Ye of Department of Material Science and Chemical Engineering, University of California at San Diego for helpful discussion.
文摘The heteroepitaxial growth of multilayer Cu/Pd(100) thin film via pulse laser deposition (PLD) at room temperature is simulated by using kinetic Monte Carlo (KMC) method with realistic physical parameters. The effects of mass transport between interlayers, edge diffusion of adatoms along the islands and instantaneous deposition are considered in the simulation model, Emphasis is placed on revealing the details of multilayer Cu/Pd(100) thin film growth and estimating the Ehrlich-Schwoebel (ES) barrier. It is shown that the instantaneous deposition in the PLD growth gives rise to the layer-by-layer growth mode, persisting up to about 9 monolayers (ML) of Cu/Pd(100). The ES barriers of 0.08 ± 0.01 eV is estimated by comparing the KMC simulation results with the real scanning tunnelling microscopy (STM) measurements,
基金the National Natural Science Foundation of China (20077019)
文摘Nicotine has been studied for the first time by pulse radiolysis techniques. It has been found that hy- drated electrons, hydrogen radicals and hydroxyl radicals can react with nicotine to produce anion radicals and neu- tral radicals, respectively, and the related rate constants have been determined.
文摘Dihydroflavonol 4-reductase (DFR), a member of the short-chain dehydrogenase family, catalyzes the last common step in the biosynthesis of flavan-3-ols and condensed tannins. Initial rates of DFR were measured by monitoring the 340-nm absorbance decrease resulting from the joint consumption of dihydroquercetin (DHQ) and NADPH, as a function of pH, temperature and ionic strength. At pH 6.5 and 30o C, substrate inhibition was observed above 30 μM DHQ. At lower/non-inhibitory DHQ concentrations, NADP+ behaves as a competitive inhibitor with respect to NADPH and as a mixed inhibitor with respect to DHQ, which supports a sequential ordered mechanism, with NADPH binding first and NADP+ released last. Binding-equilib-rium data obtained by means of the chromatographic method of Hummel and Dreyer at pH 7.5 and by isothermal calorimetric titration at pH 6.5 led to the conclusion that ligands of the apoenzyme included NADPH, NADP+ and DHQ. The mechanism which best accounts for substrate inhibition at pH 6.5 in the absence of product involves the formation of a binary non-productive E.DHQ complex. Thus, a productive ternary complex cannot be formed when DHQ binds first. This mechanism of inhibition may prevent the accumulation of unstable leucoanthocyanidins within cells.
基金This work was supported by Chinese Universities Scientific Fund(2022TC079)China Agricultural Research System of MOF and MARA(CARS-21)+1 种基金National Natural Science Foundation of China(No.32171912)Beijing Municipal Natural Science Foundation(No.6182022).
文摘This work aimed to discuss effects of pulsed vacuum drying(PVD)at different temperatures(45°C,50°C,55°C and 60°C),vacuum durations(5 min,10 min and 15 min)and multi-stage heating on drying kinetics,colour attributes,phenolic compounds and antioxidant capacity of chrysanthemum(Imperial chrysanthemum).Results indicated that successive temperature increase reduced the drying time and enhanced the drying rate and moisture diffusivity.Lower temperature(45°C)and the multi-stage(35°C-55°C-60°C)drying presented the superiority in the protection of color,preservation of phytochemical composition(chlorogenic acid,luteolin,total phenolic and total flavonoid content)and improvement of antioxidant capacity(DPPH and FRAP)of chrysanthemum,which was attributed to the low-oxygen drying environment and reduction of thermal degradation losses.Based on the results of drying efficiency and drying quality,the multi-stage heating(35°C-55°C-60°C)has the excellent potential to produce high-quality dried chrysanthemum on a commercial scale.