In our previous work,a partially decoupled process(PDP)was proposed for efficient conversion of ethane to increase the ethylene yield and a new structural reactor called forward-impinging-back reactor(FIB)was proposed...In our previous work,a partially decoupled process(PDP)was proposed for efficient conversion of ethane to increase the ethylene yield and a new structural reactor called forward-impinging-back reactor(FIB)was proposed for scale-up.In this work,the influence of changing the composition and temperature of the heat carrier was investigated by simulations with detailed chemistry to further increase of the C_(2)(C_(2)H_(2)+C_(2)H_(4))yield in the PDP of ethane.At ideal mixing conditions,the C_(2) yield is 75.3%without steam addition and it is 82.9%at steam addition ratio of β=1.4.In comparison,the C_(2) yield in an FIB reactor is 62.4%without steam addition and it increases to 78.5%with steam addition(β=1.4).The requirement of high mixing efficiency is diminished by steam addition,which is favorable for reactor scale-up.展开更多
基金supported by the National Natural Science Foundation of China(21276135)by Project of Chinese Ministry of Education(113004A).
文摘In our previous work,a partially decoupled process(PDP)was proposed for efficient conversion of ethane to increase the ethylene yield and a new structural reactor called forward-impinging-back reactor(FIB)was proposed for scale-up.In this work,the influence of changing the composition and temperature of the heat carrier was investigated by simulations with detailed chemistry to further increase of the C_(2)(C_(2)H_(2)+C_(2)H_(4))yield in the PDP of ethane.At ideal mixing conditions,the C_(2) yield is 75.3%without steam addition and it is 82.9%at steam addition ratio of β=1.4.In comparison,the C_(2) yield in an FIB reactor is 62.4%without steam addition and it increases to 78.5%with steam addition(β=1.4).The requirement of high mixing efficiency is diminished by steam addition,which is favorable for reactor scale-up.