A solar steam evaporator provides a sustainable and efficient alternative water purification solution to address the global freshwater shortage.Previous efforts have made significant advances in maximizing its water e...A solar steam evaporator provides a sustainable and efficient alternative water purification solution to address the global freshwater shortage.Previous efforts have made significant advances in maximizing its water evaporation rate,but no single evaporator has all the properties necessary for practical point-of-use application,including a high efficiency for generation of drinkable water,an excellent portability critical for on-site water purification,good washability for mitigating evaporator fouling,and good reusability.We report a strategy to produce a high-performance photothermal material for point-of-use water purification.By simultaneously incorporating graphene and gold particles grown from recycled electronic waste in a mechanically strong sponge,we achieved highly efficient water purification under realistic conditions.In addition to a high evaporation rate(3.55 kg/m^(2)/h under one-sun irradiation)attributed to a control of atomic structure of graphene and the size-dependent surface plasmon resonance of gold nanoparticles,it is portable which can be folded,vacuum compacted,dried and rehydrated without compromising performance.It also allows repeated washing to remove contaminant fouling so that it can be reused.The evaporator transforms various types of contaminated water into drinkable clean water,and can be mounted at any angle to optimize the incident solar irradiation.Furthermore,the assembled steam evaporator device could gain purified water meeting the World Health Organization drinking water standards with a high evaporation rate of 9.36 kg/m^(2)/h under outdoor sunlight.展开更多
Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composi...Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composition and structure of the hydrogers internal network.In our point of view,the importance of the surface structure of hydrogel has usually been underestimated or ignored.Here inspired by the excellent absorbance and water transportation ability of biological surface structure,the hierarchical structured hydrogel evaporators(HSEs)increased the light absorption,trapping,water transportation and water-air interface,which is the beneficial photothermal conversion and water evaporation.The HSEs showed a rapid evaporation rate of 1.77 kg·m^(-2)·h^(-1)at about 92%energy efficiency under one sun(1 kW·m^(-2)).Furthermore,the superhydrophilic window device was used in this work to collect the condensed water,which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water.Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment,this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.展开更多
基金supported primarily by the Peacock Team Project(KQTD20210811090112002)the National Natural Science Foundation of China(52188101)+2 种基金the Scientific Research Start-up Funds of Tsinghua SIGS(QD2021026C)the Research Fund from Shenzhen International Graduate School,Tsinghua University(JC2021011)Shenzhen Geim Graphene Center。
文摘A solar steam evaporator provides a sustainable and efficient alternative water purification solution to address the global freshwater shortage.Previous efforts have made significant advances in maximizing its water evaporation rate,but no single evaporator has all the properties necessary for practical point-of-use application,including a high efficiency for generation of drinkable water,an excellent portability critical for on-site water purification,good washability for mitigating evaporator fouling,and good reusability.We report a strategy to produce a high-performance photothermal material for point-of-use water purification.By simultaneously incorporating graphene and gold particles grown from recycled electronic waste in a mechanically strong sponge,we achieved highly efficient water purification under realistic conditions.In addition to a high evaporation rate(3.55 kg/m^(2)/h under one-sun irradiation)attributed to a control of atomic structure of graphene and the size-dependent surface plasmon resonance of gold nanoparticles,it is portable which can be folded,vacuum compacted,dried and rehydrated without compromising performance.It also allows repeated washing to remove contaminant fouling so that it can be reused.The evaporator transforms various types of contaminated water into drinkable clean water,and can be mounted at any angle to optimize the incident solar irradiation.Furthermore,the assembled steam evaporator device could gain purified water meeting the World Health Organization drinking water standards with a high evaporation rate of 9.36 kg/m^(2)/h under outdoor sunlight.
基金We thank Prof.Cunming Yu and Dr.Xiao Xiao for providing COMSLO simulation.This work was supported by the National Natural Science Funds for Distinguished Young Scholar(No.21725401)the National Key R&D Program of China(No.2017YFA0207800)+1 种基金the 111 project(B14009)the Fundamental Research Funds for the Central Universities.
文摘Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composition and structure of the hydrogers internal network.In our point of view,the importance of the surface structure of hydrogel has usually been underestimated or ignored.Here inspired by the excellent absorbance and water transportation ability of biological surface structure,the hierarchical structured hydrogel evaporators(HSEs)increased the light absorption,trapping,water transportation and water-air interface,which is the beneficial photothermal conversion and water evaporation.The HSEs showed a rapid evaporation rate of 1.77 kg·m^(-2)·h^(-1)at about 92%energy efficiency under one sun(1 kW·m^(-2)).Furthermore,the superhydrophilic window device was used in this work to collect the condensed water,which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water.Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment,this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.