The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam tu...In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network.Finally,this model is applied to optimize the steam turbine network of an ethylene plant.The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines,and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.展开更多
The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is pr...The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network (ANN). The model of novel fault diagnosis system by using ANN are built and analyzed. Cases of the diagnosis are simulated. The results show that the real-time fault diagnosis system is of high accuracy and quick convergence. It is also found that this model is feasible in real-time fault diagnosis. The steam turbine is used as a power generator by SONELGAZ, an Algerian company located at Cap Djinet town in Boumerdes district. We used this turbine as our main target for the purpose of this analysis. After deep investigation, while keeping our focus on the most sensitive parts within the turbine, the weakest and the strongest points of the system were identified. Those are the points mostly adequate for failure simulations and at which the designed system will be better positioned for irregularities detection during the production process.展开更多
All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At ...All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.展开更多
This paper introduces a kind of diagnosis principle and learning algorithm of steam turbine fault diagnosis which based on Elman neural network. Comparing the results of the Elman neural network and the traditional BP...This paper introduces a kind of diagnosis principle and learning algorithm of steam turbine fault diagnosis which based on Elman neural network. Comparing the results of the Elman neural network and the traditional BP neural network diagnosis, the results shows that Elman neural network is an effective way to improve the learning speed , effectively suppress the minimum defects that the traditional neural network easily trapped in, and shorten the autonomous learning time. All these proves that the Elman neural network is an effective way to diagnose the steam turbine.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power pla...Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,展开更多
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202),the National Natural Science Foundation of China(21276078,61174118,21206037)the National Science Fund for Outstanding Young Scholars(61222303)
文摘In this paper,we developed a hybrid model for the steam turbines of a utility system,which combines an improved neural network model with the thermodynamic model.Then,a nonlinear programming(NLP) model of the steam turbine network is formulated by utilizing the developed steam turbine models to minimize the total steam cost for the whole steam turbine network.Finally,this model is applied to optimize the steam turbine network of an ethylene plant.The obtained results demonstrate that this hybrid model can accurately estimate and evaluate the performance of steam turbines,and the significant cost savings can be made by optimizing the steam turbine network operation at no capital cost.
文摘The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network (ANN). The model of novel fault diagnosis system by using ANN are built and analyzed. Cases of the diagnosis are simulated. The results show that the real-time fault diagnosis system is of high accuracy and quick convergence. It is also found that this model is feasible in real-time fault diagnosis. The steam turbine is used as a power generator by SONELGAZ, an Algerian company located at Cap Djinet town in Boumerdes district. We used this turbine as our main target for the purpose of this analysis. After deep investigation, while keeping our focus on the most sensitive parts within the turbine, the weakest and the strongest points of the system were identified. Those are the points mostly adequate for failure simulations and at which the designed system will be better positioned for irregularities detection during the production process.
文摘All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.
文摘This paper introduces a kind of diagnosis principle and learning algorithm of steam turbine fault diagnosis which based on Elman neural network. Comparing the results of the Elman neural network and the traditional BP neural network diagnosis, the results shows that Elman neural network is an effective way to improve the learning speed , effectively suppress the minimum defects that the traditional neural network easily trapped in, and shorten the autonomous learning time. All these proves that the Elman neural network is an effective way to diagnose the steam turbine.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
基金This work was supported by the Natural Science Foundation of Beijing (No. 4062030)National Natural Science Foundation of China (No. 50576022,69804003)Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611232007).
文摘Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modem power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained,