期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic simulation of drum level sloshing of heat recovery steam generator
1
作者 曹小玲 皮正仁 +2 位作者 蒋绍坚 杨卫宏 B.Wlodzimerz 《Journal of Central South University》 SCIE EI CAS 2013年第2期413-423,共11页
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ... Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level. 展开更多
关键词 combined cycle heat recovery steam generator false level drum level sloshing model modularization modeling
下载PDF
Performance Improvement of Combined Cycle Power Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation 被引量:3
2
作者 Wenguo XIANG Yingying CHEN 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第1期84-89,共6页
Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant... Many F class gas turbine combined cycle (GTCC) power plants are built in China at present because of less emission and high efficiency. It is of great interest to investigate the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam generator (HRSG) is selected for study in this paper. In order to maximize the GTCC efficiency, the optimization of the HRSG operating parameters is performed. The operating parameters are determined by means of a thermodynamic analysis, i.e. the minimization of exergy losses. The influence of HRSG inlet gas temperature on the steam bottoming cycle efficiency is discussed. The result shows that increasing the HRSG inlet temperature has less improvement to steam cycle efficiency when it is over 590℃. Partial gas to gas recuperation in the topping cycle is studied. Joining HRSG optimization with the use of gas to gas heat recuperation, the combined plant efficiency can rise up to 59.05% at base load. In addition, the part load performance of the GTCC power plant gets much better. The efficiency is increased by 2.11% at 75% load and by 4.17% at 50% load. 展开更多
关键词 Heat recovery steam Generators (HRSG) Thermodynamic optimization Exergy analysis Combined cycle power plant EFFICIENCY Heat rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部