Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatme...Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage.展开更多
Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhous...Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.展开更多
In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid(SA),the composite phase change material(PCM)was prepared by adding boron nitride(BN)and expanded graphite(EG)to melt...In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid(SA),the composite phase change material(PCM)was prepared by adding boron nitride(BN)and expanded graphite(EG)to melted SA,and its thermal conductivity,crystal structure,chemical stability,thermal stability,cycle stability,leakage characteristics,heat storage/release characteristics,and temperature response characteristics were char-acterized.The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material,and they efficiently adsorbed melted SA.The maximum load of SA was 76 wt.%and there was almost no liquid leakage.Moreover,the melting enthalpy and temperature were 154.20 J·g^(−1) and 67.85℃,re-spectively.Compared with pure SA,the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature.In addition,when the mass fraction of BN and EG was 12 wt.%,the thermal conductivity of the composite was 6.349 W·m^(−1)·K^(−1),which was 18.619 times that of SA.More importantly,the composite showed good stability for 50 cycles of heating and cooling,and the SA/BN/EG-12 hardly decomposes below 200℃,which implies that the working performance of the composite PCM is relatively stable within the tem-perature range of 100℃.Therefore,the composite can exhibit excellent thermal stability in the field of building heating.展开更多
A nanocomposite phase change thermal energy storage material was prepared by intercalating stearic acid into the nano-layers of modified bentonite in liquid media. XRD patterns showed that the intergallery distance of...A nanocomposite phase change thermal energy storage material was prepared by intercalating stearic acid into the nano-layers of modified bentonite in liquid media. XRD patterns showed that the intergallery distance of the nanocomposite material was larger than that of modified bentonite owing to intercalating of stearic acid. The phase change temperature of the nanocomposite phase change material was different from that of stearic acid,and its phase change latent heat was equivalent to the calculated value based on the mass ratio of stearic acid in the composite. The experimental results of thermal energy storage and release indicated that the heat transfer rate of the nanocomposite material was obviously higher than that of stearic acid. After the nanocomposite experienced 1500 times cooling-heating cyclic test,its phase change temperature and latent heat showed little change,which suggested that the stearic acid/bentonite nanocomposite phase change material exhibited good stability of structure and properties. This method of intercalating organic phase change material into the nano-layers of bentonite provides a new route to prepare phase change materials with high performances.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52274252)the Special Fund for the Construction of Innovative Provinces in Hunan Province,China (Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China (No.kq1802007)。
文摘Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage.
基金Supported by the Research Fund of Gaziosmanpasa University (No.2003/42).
文摘Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.
基金This research was supported by the National Natural Science Foundation of China(No.51766012)the Natural Science Foundation of Inner Mongolia(No.2019MS05025)+1 种基金the Inner Mongolia Science and Technology Major Project(No.2019ZD014,No.2021ZD0030)the Science and Technology Research Project of Inner Mongolia Autonomous Region(No.2021GG0252).
文摘In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid(SA),the composite phase change material(PCM)was prepared by adding boron nitride(BN)and expanded graphite(EG)to melted SA,and its thermal conductivity,crystal structure,chemical stability,thermal stability,cycle stability,leakage characteristics,heat storage/release characteristics,and temperature response characteristics were char-acterized.The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material,and they efficiently adsorbed melted SA.The maximum load of SA was 76 wt.%and there was almost no liquid leakage.Moreover,the melting enthalpy and temperature were 154.20 J·g^(−1) and 67.85℃,re-spectively.Compared with pure SA,the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature.In addition,when the mass fraction of BN and EG was 12 wt.%,the thermal conductivity of the composite was 6.349 W·m^(−1)·K^(−1),which was 18.619 times that of SA.More importantly,the composite showed good stability for 50 cycles of heating and cooling,and the SA/BN/EG-12 hardly decomposes below 200℃,which implies that the working performance of the composite PCM is relatively stable within the tem-perature range of 100℃.Therefore,the composite can exhibit excellent thermal stability in the field of building heating.
文摘A nanocomposite phase change thermal energy storage material was prepared by intercalating stearic acid into the nano-layers of modified bentonite in liquid media. XRD patterns showed that the intergallery distance of the nanocomposite material was larger than that of modified bentonite owing to intercalating of stearic acid. The phase change temperature of the nanocomposite phase change material was different from that of stearic acid,and its phase change latent heat was equivalent to the calculated value based on the mass ratio of stearic acid in the composite. The experimental results of thermal energy storage and release indicated that the heat transfer rate of the nanocomposite material was obviously higher than that of stearic acid. After the nanocomposite experienced 1500 times cooling-heating cyclic test,its phase change temperature and latent heat showed little change,which suggested that the stearic acid/bentonite nanocomposite phase change material exhibited good stability of structure and properties. This method of intercalating organic phase change material into the nano-layers of bentonite provides a new route to prepare phase change materials with high performances.