As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas i...As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.展开更多
The present work investigates the hot-corrosion behavior of carbon nanotube(CNT)-reinforced chromium oxide coatings on boiler steel in a molten salt(Na_2SO_4–60 wt%V_2O_5) environment at 700°C under cyclic condi...The present work investigates the hot-corrosion behavior of carbon nanotube(CNT)-reinforced chromium oxide coatings on boiler steel in a molten salt(Na_2SO_4–60 wt%V_2O_5) environment at 700°C under cyclic conditions. The coatings were deposited via the high-velocity oxygen fuel process. The uncoated and coated steel samples were subjected to hot corrosion in a silicon tube furnace at 700°C for 50 cycles. The kinetics of the corrosion behavior was analyzed through mass-gain measurements after each cycle. The corrosion products were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis techniques. The results revealed that uncoated steel suffered spallation of scale because of the formation of nonprotective Fe_2O_3 scale. The coated steel samples exhibited lower mass gains with better adhesiveness of oxide scale with the steel alloy until the end of exposure. The CNT-reinforced coatings were concluded to provide better corrosion resistance in the hot-corrosion environment because of the uniform dispersion of CNTs in the coating matrix and the formation of protective chromium oxides in the scale.展开更多
In this paper, we review the evolution of 12CrlMoV steel standards at home and abroad, analyze the effects of various elements and determine their optimal contents in steel. The influence of heat treatment and microst...In this paper, we review the evolution of 12CrlMoV steel standards at home and abroad, analyze the effects of various elements and determine their optimal contents in steel. The influence of heat treatment and microstructure on the creep strength of 12CrlMoV steel is investigated. Statistical results from conventional mechanical properties, ductile-brittle transition temperature, high temperature oxidation resistance, aging, instant high temperature properties, and creep are introduced. The results show that the chemical composition and heat treatment process of 12CrlMoVG steel identified in the GB 5310 - 2008 standard is appropriate, resulting in a steel with higher creep strength and good comprehensive properties.展开更多
The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the...The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the furnace coupled with the corrosive marine environment swirler material showed accelerated degradation and material wastage. An investigation into the feasibility of manufacturing the existing swirler with an alternate material or coating the swirler material with a thermal barrier coating was undertaken. Based on their properties and performance, SS 304 and SS 316 were proposed as the replacement materials for the swirler. The other alternative of coating the existing swirlers with a form thermal barrier coating to observe for any improvement in their performance at elevated temperatures was also tested. Stellite, which is a Ni-Co based coating, was carried out on the MS samples and the same were exposed to same temperatures mentioned above. The performance of the available options was evaluated with respect to the grain structure of the material, the hardness value of the materials and deterioration at elevated temperatures. Investigation showed the proposed materials/ coatings like SS 304, SS 316 and Stellite coating revealed that SS 316 is the material best suited for high temperature application.展开更多
基金Project(L2012082)supported by the Science and Technology Research Funds of Liaoning Provincial Education Department,China
文摘As valuable energy in iron-and steel-making process,by-product gas is widely used in heating and technical processes in steel plant.After being used according to the technical requirements,the surplus by-product gas is usually used for buffer boilers to produce steam.With the rapid development of energy conservation technology and energy consumption level,surplus gas in steel plant continues to get larger.Therefore,it is significant to organize surplus gas among buffer boilers.A dynamic programming model of that issue was established in this work,considering the ramp rate constraint of boilers and the influences of setting gasholders.Then a case study was done.It is shown that dynamic programming dispatch gets more steam generation and less specific gas consumption compared with current proportionate dispatch depending on nominal capacities of boilers.The ignored boiler ramp rate constraint was considered and its contribution to the result validity was pointed out.Finally,the significance of setting gasholders was studied.
文摘The present work investigates the hot-corrosion behavior of carbon nanotube(CNT)-reinforced chromium oxide coatings on boiler steel in a molten salt(Na_2SO_4–60 wt%V_2O_5) environment at 700°C under cyclic conditions. The coatings were deposited via the high-velocity oxygen fuel process. The uncoated and coated steel samples were subjected to hot corrosion in a silicon tube furnace at 700°C for 50 cycles. The kinetics of the corrosion behavior was analyzed through mass-gain measurements after each cycle. The corrosion products were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis techniques. The results revealed that uncoated steel suffered spallation of scale because of the formation of nonprotective Fe_2O_3 scale. The coated steel samples exhibited lower mass gains with better adhesiveness of oxide scale with the steel alloy until the end of exposure. The CNT-reinforced coatings were concluded to provide better corrosion resistance in the hot-corrosion environment because of the uniform dispersion of CNTs in the coating matrix and the formation of protective chromium oxides in the scale.
文摘In this paper, we review the evolution of 12CrlMoV steel standards at home and abroad, analyze the effects of various elements and determine their optimal contents in steel. The influence of heat treatment and microstructure on the creep strength of 12CrlMoV steel is investigated. Statistical results from conventional mechanical properties, ductile-brittle transition temperature, high temperature oxidation resistance, aging, instant high temperature properties, and creep are introduced. The results show that the chemical composition and heat treatment process of 12CrlMoVG steel identified in the GB 5310 - 2008 standard is appropriate, resulting in a steel with higher creep strength and good comprehensive properties.
文摘The present paper investigated and analyzed swirler material consisting of mild steel which was subjected to service for the period of one year in a 30 MW marine boiler. Due to the presence of high temperatures in the furnace coupled with the corrosive marine environment swirler material showed accelerated degradation and material wastage. An investigation into the feasibility of manufacturing the existing swirler with an alternate material or coating the swirler material with a thermal barrier coating was undertaken. Based on their properties and performance, SS 304 and SS 316 were proposed as the replacement materials for the swirler. The other alternative of coating the existing swirlers with a form thermal barrier coating to observe for any improvement in their performance at elevated temperatures was also tested. Stellite, which is a Ni-Co based coating, was carried out on the MS samples and the same were exposed to same temperatures mentioned above. The performance of the available options was evaluated with respect to the grain structure of the material, the hardness value of the materials and deterioration at elevated temperatures. Investigation showed the proposed materials/ coatings like SS 304, SS 316 and Stellite coating revealed that SS 316 is the material best suited for high temperature application.