期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Hot Deformation Behavior and Processing Maps of As-cast Mn18Cr18N Steel 被引量:4
1
作者 陈慧琴 wang zhenxing +2 位作者 qin fengming jia peijie zhao xiaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期935-943,共9页
Hot deformation behavior of as-cast Mn18Cr18 N austenitic stainless steel was studied in the temperature range of 950-1200 ℃ and strain rate range of 0.001-1 s^(-1) using isothermal hot compression tests. The true ... Hot deformation behavior of as-cast Mn18Cr18 N austenitic stainless steel was studied in the temperature range of 950-1200 ℃ and strain rate range of 0.001-1 s^(-1) using isothermal hot compression tests. The true stress-strain curves of the steel were characterized by hardening and subsequent softening and varied with temperatures and strain rates. The hot deformation activation energy of the steel was calculated to be 657.4 k J/mol, which was higher than that of the corresponding wrought steel due to its as-cast coarse columnar grains and heterogeneous structure. Hot processing maps were developed at different plastic strains, which exhibited two domains with peak power dissipation efficiencies at 1150 ℃/0.001 s^(-1) and 1200 ℃/1 s^(-1), respectively. The corresponding microstructures were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD). It has been confirmed that dynamic recrystallization(DRX) controlled by dislocation slipping and climbing mechanism occurs in the temperature and strain rate range of 1050-1200 ℃ and 0.001-0.01 s^(-1); And DRX controlled by twinning mechanism occurs in the temperature and strain rate range of 1100-1200 ℃, 0.1-1 s^(-1). These two DRX domains can serve as the hot working windows of the as-cast steel at lower strain rates and at higher strain rates, respectively. The processing maps at different strains also exhibit that the instability region decreases with increasing strain. The corresponding microstructures and the less tensile ductility in the instability region imply that the flow instability is attributed to flow localization accelerated by a few layers of very fine recrystallized grains along the original grain boundaries. 展开更多
关键词 Mn18Cr18N steel hot deformation hot processing map dynamic recrystallization hot workability
下载PDF
Effect of Plastic Deformation and H_2S on Dynamic Fracture Toughness of High Strength Casing Steel 被引量:1
2
作者 曾德智 ZHANG Naiyan +3 位作者 TIAN Gang HU Junying ZHANG Zhi SHI Taihe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期397-403,共7页
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)... The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly. 展开更多
关键词 sour gas fields high strength casing C110 steel plastic deformation H2S fracture toughness
下载PDF
Deformation Behavior and Formability of Gradient Nano-grained AISI 304 Stainless Steel Processed by Ultrasonic Impact Treatment 被引量:3
3
作者 杨新俊 LING Xiang +1 位作者 WANG Dongxiang 王伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1147-1155,共9页
The deformation behavior and formability of gradient nano-grained(GNG) AISI 304 stainless steel in uniaxial and biaxial states were investigated by means of tensile test and small punch test(SPT). The GNG top laye... The deformation behavior and formability of gradient nano-grained(GNG) AISI 304 stainless steel in uniaxial and biaxial states were investigated by means of tensile test and small punch test(SPT). The GNG top layer was fabricated on coarse grains(CG) AISI 304 by ultrasonic impact treatment. The results showed that the CG substrate could effectively suppress the strain localization of NC in GNG layer, and an approximate linear relationship existed between the thickness of substrate(h) and uniform true strain before necking(ε_(unif)). Grain growth of NC was observed at the stress state with high Stress triaxiality T, which led to better ductility of GNG/CG 304 in SPT, as well as similar true strain after the onset of necking(ε_(neck)) compared with coarse 304 in tensile test. Ei-values of GNG/CG 304 with different structures were nearly the same at different punch speeds, and good formability of GNG/CG 304 was demonstrated. However, punch speed and microstructure needed to be optimized to avoid much lost of membrane strain region in biaxial stress state. 展开更多
关键词 gradient nano-grained structure deformation behavior formability ultrasonic impact treatment AISI 304 stainless steel
下载PDF
Effects of deformation parameters on formation of pro-eutectoid cementite in hypereutectoid steels
4
作者 管仁国 赵占勇 +2 位作者 钞润泽 刘相华 C.S.LEE 《Journal of Central South University》 SCIE EI CAS 2014年第4期1256-1263,共8页
Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite... Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested. 展开更多
关键词 pro-eutectoid cementite hypereutectoid steel hot deformation transformation temperature
下载PDF
Analysis of Coating Microstructure of Hot-Dip Aluminum of Deformed Low-Carbon Steel Containing Rare Earth 被引量:1
5
作者 范力茹 刘琳 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期460-463,共4页
The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show tha... The coating microstructure of hot-dip aluminum (HDA) of deformed low-carbon steel containing RE was analyzed by metallography microscopy, TEM and XRD, and the forming mechanism was also discussed. The results show that, the Fe_2Al_5 phase, on whose subcrystal boundaries, Al particles with the size of 7~30 μm existing on parallel linear are, grows a strong orientation. And the spread activation energy of Al is 155.22 kJ·mol -1. In addition, the effects of deformation on coating microstructure of hot-dip aluminum and the function of RE were preliminarily analyzed. 展开更多
关键词 deformed low-carbon steel hot-dip aluminum (HDA) the coating microstructure rare earths
下载PDF
Microstructural evolution during ultra-rapid annealing of severely deformed low-carbon steel: strain, temperature, and heating rate effects 被引量:3
6
作者 M.A.Mostafaei M.Kazeminezhad 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期779-792,共14页
An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The ... An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200–1100°C/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction. 展开更多
关键词 low-carbon steel annealing microstructural evolution recrystallization phase transformation plastic deformation
下载PDF
Texture evolution during semicontinuous equal-channel angular extrusion process of interstitial-free steel
7
作者 YAN Bo JIAO Sihai ZHANG Dianhua 《Baosteel Technical Research》 CAS 2015年第4期45-51,共7页
Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specime... Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specimens in the conventional ECAE,driving forces are applied to dies in SC-EACE. The deformation of interstitial-free( IF) steel w as performed at room temperature,and individual specimens w ere repeatedly processed at various passes. An overall grain size of 0. 55 μm w as achieved after 10 passes. During SC-ECAE,the main textures of IF steel included { 111} ,{ 110} ,{ 112} ,{ 110} ,and { 110} At an early stage,increasing dislocations induce new textures and increase intensity. When the deformation continues,low-angle boundaries are formed betw een dislocation cell bands,w hich cause some dislocation cell bands to change their orientation,and therefore,the intensity of the textures begins to decrease. After more passes,the intensity of textures continues to decrease w ith high-angle boundaries,and the sub-grains in dislocation cell bands continuously increase. The present study reports the evolution of textures during deformation; these w ere examined and characterized using high-resolution electron backscattered diffraction( EBSD) in a field emission scanning electron microscope. The mechanisms of texture evolution are discussed. 展开更多
关键词 severe plastic deformation semicontinuous equal-channel angular extrusion interstitial-free steel texture evolution electron backscattered diffraction
下载PDF
Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review 被引量:17
8
作者 Yinghui Zhou Yongchang Liu +5 位作者 Xiaosheng Zhou Chenxi Liu Jianxin Yu Yuan Huang Huijun Li Wenya Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第12期1448-1456,共9页
The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination ... The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels. 展开更多
关键词 Austenitic steels Coarsening behavior Hot deformation Microstructure
原文传递
Effect of Cold Deformation on the Friction–Wear Property of a Biomedical Nickel-Free High-Nitrogen Stainless Steel 被引量:6
9
作者 Hao-Chuan Zhao Yi-Bin Ren +2 位作者 Jia-Hui Dong Xin-Min Fan Ke Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第3期217-227,共11页
The microstructural,mechanical and corrosion properties of different cold-rolled biomedical nickel-free highnitrogen stainless steels(NFHNSSs) were investigated to study the effect of cold deformation on its dry wea... The microstructural,mechanical and corrosion properties of different cold-rolled biomedical nickel-free highnitrogen stainless steels(NFHNSSs) were investigated to study the effect of cold deformation on its dry wear resistance as well as corrosion–wear behaviors in distilled water and Hank's solution. The results indicated that NFHNSS was characterized by stable austenite and possessed excellent work-hardening capacity; due to increasing cold deformation,the corrosion resistance just decreased very slightly and the dry wear rate decreased initially but subsequently increased,while the corrosion–wear resistance was improved monotonically in both distilled water and Hank's solution in spite of the presence of corrosive ions. The friction coefficients for different cold-rolled NFHNSSs were very close under the same lubricating condition,but they were the largest in distilled water compared to that in dry wear tests and Hank's solution. 展开更多
关键词 Nickel-free high-nitrogen stainless steel Cold deformation Friction Wear Lubricating condition
原文传递
Hot Deformation Behavior and Flow Stress Prediction of Ultra Purified 17% Cr Ferritic Stainless Steel Stabilized with Nb and Ti 被引量:4
10
作者 Fei GAO Fu-xiao YU +1 位作者 Hai-tao LIU Zhen-yu LIU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第9期827-836,共10页
The hot deformation behavior of ultra purified 17% Cr ferritic stainless steel stabilized with Nb and Ti was investigated using axisymmetric hot compression tests on a thermomechanical simulator.The deformation was ca... The hot deformation behavior of ultra purified 17% Cr ferritic stainless steel stabilized with Nb and Ti was investigated using axisymmetric hot compression tests on a thermomechanical simulator.The deformation was carried out at the temperatures ranging from 700 to 1 100℃ and strain rates from 1to 10s-1.The microstructure was investigated using electron backscattering diffraction.The effects of temperature and strain rate on deformation behavior were represented by Zener-Hollomon parameter in an exponent type equation.The effect of strain was incorporated in the constitutive equation by establishing polynomial relationship between the material constants and strain.A sixth order polynomial was suitable to represent the effect of strain.The modified constitutive equation considering the effect of strain was developed and could predict the flow stress throughout the deformation conditions except at800℃in 1s-1 and at 700℃in 5and 10s-1.Losing the reliability of the modified constitutive equation was possibly ascribed to the increase in average Taylor factor at 800℃in 1s-1 and the increase in temperature at 700℃in 5and10s-1 during hot deformation.The optimum window for improving product quality of the ferritic stainless steels was identified as hot rolling at a low finisher entry temperature of 700℃,which can be achieved in practical production. 展开更多
关键词 17%Cr ferritic stainless steel hot deformation flow stress constitutive equation strain compensation
原文传递
Hot Deformation Behavior of a Novel Ni-Cr-Mo-B Ultra-heavy Plate Steel by Hot Compression Test 被引量:2
11
作者 Zhi-yu GAO Tao PAN +2 位作者 Zhuo WANG Guo-quan LIU Hang SU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第9期818-826,共9页
Hot deformation behavior of a novel Ni-Cr-Mo-B heavy plate steel was studied by hot compression tests,which were conducted on a Gleeble-3800thermo-mechanical simulator corresponding to the temperature range of850-1 15... Hot deformation behavior of a novel Ni-Cr-Mo-B heavy plate steel was studied by hot compression tests,which were conducted on a Gleeble-3800thermo-mechanical simulator corresponding to the temperature range of850-1 150℃ with the strain rates of 0.01-10s-1 and the true strain of 0.8.The results suggest that the majority of flow curves exhibit a typical dynamic recrystallization(DRX)behavior with an apparent single peak stress followed by agradual fall towards a steady-state stress.Important characteristic parameters of flow behavior as critical stress/strain for initiation of DRX and peak and steady-state stress/strain were derived from curves of strain hardening rate versus stress and stress versus strain,respectively.Material constants of the investigated steel were determined based on Arrhenius-type constitutive equation,and then the peak stress was predicted by the equation with the hot deformation activation energy of 379 139J/mol,and the predicted values agree well with the experimental values.Furthermore,the effect of Zener-Hollomon parameter on the characteristic points of flow curves was studied using the power law relation,and the ratio of critical stress and strain to peak stress and strain were found to be 0.91and0.46,respectively. 展开更多
关键词 Ni-Cr-Mo-B heavy plate steel hot deformation constitutive equation activation energy characteristic parameter
原文传递
Hot Deformation Behavior and Processing Map of Spray Formed M3∶ 2 High Speed Steel 被引量:3
12
作者 Lin LU Long-gang HOU +3 位作者 Hua CUI Jin-feng HUANG Yong-an ZHANG Ji-shan ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期501-508,共8页
Hot deformation behavior of a new type of M3∶ 2 high speed steel with niobium addition made by spray forming was investigated based on compression tests in the temperature range of 950-1 150 ℃ and strain rate of 0. ... Hot deformation behavior of a new type of M3∶ 2 high speed steel with niobium addition made by spray forming was investigated based on compression tests in the temperature range of 950-1 150 ℃ and strain rate of 0. 001-10 s^(-1). A comprehensive constitutive equation was obtained,which could be used to predict the flow stress at different strains. Processing map was developed on the basis of the flow stress data using the principles of dynamic material model. The results showed that the flow curves were in fair agreement with the dynamic recrystallization model. The flow stresses,which were calculated by the comprehensive constitutive equation,agreed well with the test data at low strain rates( ≤1 s^(-1)). The material constant( α),stress exponent( n) and the hot deformation activation energy( Q_(HW)) of the new steel were 0. 006 15 MPa^(-1),4. 81 and 546 kJ·mol^(-1),respectively. Analysis of the processing map with an observation of microstructures revealed that hot working processes of the steel could be carried out safely in the domain( T = 1 050-1 150 ℃,ε = 0. 01- 0. 1 s^(-1))with about 33% peak efficiency of power dissipation( η). Cracks was expected in two domains at either lower temperatures( 〈 1 000 ℃) or low strain rates( 0. 001 s^(-1)) with different cracking mechanisms. Flow localization occurred when the strain rates exceeded 1 s^(-1) at all testing temperatures. 展开更多
关键词 high speed steel spray forming hot deformation processing map niobium
原文传递
Analysis on Shear Deformation for High Manganese Austenite Steel during Hot Asymmetrical Rolling Process Using Finite Element Method 被引量:4
13
作者 Feng-li SUI Xin WANG +2 位作者 Jun ZHAO Biao MA Chang-sheng LI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第11期990-995,共6页
Based on the rigid-plastic finite element method(FEM), the shear stress field of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The influences of rolling ... Based on the rigid-plastic finite element method(FEM), the shear stress field of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The influences of rolling parameters, such as the velocity ratio of upper to lower rolls, the initial temperature of workpiece and the reduction rate, on the shear deformation of three nodes in the upper, center and lower layers were discussed. As the rolling parameters change, distinct shear deformation appears in the upper and lower layers, but the shear deformation in the center layer appears only when the velocity ratio is more than 1.00, and the absolute value of the shear stress in this layer is changed with rolling parameters. A mathematical model which reflected the change of the maximal absolute shear stress for the center layer was established, by which the maximal absolute shear stress for the center layer can be easily calculated and the appropriate rolling technology can be designed. 展开更多
关键词 high manganese austenite steel hot asymmetrical rolling shear deformation finite element method
原文传递
Tensile behavior and deformation mechanism of quenching and partitioning treated steels at different deforming temperatures 被引量:2
14
作者 Lian bo Luo Wei Li +2 位作者 Yu Gong Li Wang Xue-jun Jin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1104-1108,共5页
The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing... The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation. 展开更多
关键词 Quenching and partitioning treated steel Mechanical property Deforming temperature Retained austenite Work hardening behavior
原文传递
Hot Deformation Behavior of GCr15 Steel 被引量:1
15
作者 PENG Ning-qi TANG Guang-bo +1 位作者 YAO Jun LIU Zheng-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第3期50-56,共7页
Hot deformation behavior of GCr15(ASTM 52100) steel was investigated using single-hit compression tests on Gleeble-1500 simulator at the temperature range of 850-1 100 ℃ and strain rate range of 0.1-10 s-1.The flow... Hot deformation behavior of GCr15(ASTM 52100) steel was investigated using single-hit compression tests on Gleeble-1500 simulator at the temperature range of 850-1 100 ℃ and strain rate range of 0.1-10 s-1.The flow stress constitutive equation of GCr15 steel during hot deformation was determined by stress-strain curves analysis on the basis of the hyperbolic sine equation.And the models of dynamic recrystallization fraction and dynamic recrystallization grain size of GCr15 steel were established by the measured curves and microstructure observation in different experimental conditions.The mean activation energy and the time exponent of dynamic recrystallization kinetics equation in the range of experimental conditions were determined to be 356.2 kJ/mol and 2.12,respectively.Meanwhile,the flow stress model was also established by the method of allocating flow stress curve with three main stress values,the saturation stress,the steady state stress and the stress when strain is 0.1.The flow stress curves predicted by the developed models under different deformation conditions are in good agreements with the measured ones. 展开更多
关键词 GCr15 steel hot deformation flow stress dynamic recrystallization
原文传递
In Situ TEM Observation on Martensitic Transformation during Tensile Deformation of SUS304 Metastable Austenitic Stainless Steel 被引量:2
16
作者 Xi-Feng Li Wei Ding +2 位作者 Jian Cao Li-Yan Ye Jun Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第3期302-306,共5页
Through in situ transmission electron microscopy observation on SUS304 metastable austenitic stainless steel during stretching at room temperature,it is found that e martensite plates were induced preferentially from ... Through in situ transmission electron microscopy observation on SUS304 metastable austenitic stainless steel during stretching at room temperature,it is found that e martensite plates were induced preferentially from the sites of dislocation pile-ups.With increasing deformation,some of ε thin martensite platelets disappear and reversibly transform toγ austenite without heating treatment,which is different from the previous result that ε martensite can entirely transform toα'martensite.Then,some of deformation twins appear and grow along the vertical direction of ε martensite due to(111)_γ⊥(1010)_ε.Moreover,it is directly observed that multiple transformation mechanisms via γ→ε→γ,γ→ε,γ→α′,γ→ε→α′,γ→ deformation twins →α′ can co-exist. 展开更多
关键词 In situ TEM SUS304 stainless steel Martensitic transformation ε Martensite deformation twin
原文传递
Deformation Behavior of Fe-36Ni Steel during Cryogenic( 123-173 K) Rolling 被引量:4
17
作者 Jian-jun ZHENG Chang-sheng LI +2 位作者 Shuai HE Ban CAI Yan-lei SONG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期447-452,共6页
Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in ... Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process. 展开更多
关键词 Fe-36Ni steel cryogenic rolling twinning dislocation slip room temperature deformation microstructure
原文传递
Effect of Cooling Start Temperature on Microstructure and Mechanical Properties of X80 High Deformability Pipeline Steel 被引量:8
18
作者 ZHENG Xiao-fei KANG Yong-lin +2 位作者 MENG De-liang AN Shou-yong XIA Dian-xiu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期42-46,71,共6页
The effect of cooling (laminar cooling) start temperature on the phase constitution was analyzed by quanti- tative metallography. The martensite/austenite (M/A) island distribution was fixed by colour metallograph... The effect of cooling (laminar cooling) start temperature on the phase constitution was analyzed by quanti- tative metallography. The martensite/austenite (M/A) island distribution was fixed by colour metallography. The strength and uniform elongation of the steels were tested with quasi-static tensile testing machine. The in-coordinate deformation of the soft and hard phases was analyzed using FEM. The results indicate that when the cooling start temperature is 690 ℃, the mechanical properties are the best, meeting the requirements of X80 high deformability pipeline steel. 展开更多
关键词 high deformability pipeline steel cooling start temperature carbon diffusion in-coordinate deformationsM/A island
原文传递
Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel 被引量:1
19
作者 Zhi-xin XIA Chuan-yang WANG +3 位作者 Chen LEI Yun-ting LAI Yan-fen ZHAO Lu ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第7期685-691,共7页
The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electro... The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission electron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe_2(W,Mo)Laves phase has formed during creep with 200 MPa applied stress at 883 Kfor 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase. 展开更多
关键词 heat resistant steel Laves phase microstructure plastic deformation creep rupture
原文传递
Formability Investigations of High-Strength Dual-Phase Steels
20
作者 Miklós Tisza Zsolt Lukács 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第12期1471-1481,共11页
Car manufacturing is always regarded as the key industry behind sheet metal forming, and thus, the requirements of and developments in car manufacturing play a decisive role in the development of sheet metal forming. ... Car manufacturing is always regarded as the key industry behind sheet metal forming, and thus, the requirements of and developments in car manufacturing play a decisive role in the development of sheet metal forming. The automotive industry is faced with contradictory demands and requirements: better performance with lower consumption and less harmful emissions, more safety and comfort; these are extremely difficult to supply simultaneously with conventional materials and conventional manufacturing processes. The fulfillment of these often contradictory requirements is one of the main driving forces in the automotive industry and thus in the material and process developments in sheet metal forming, as well. In recent years, significant developments can be observed in the application of high-strength steels. In this respect, the application of various dual-phase steels is one of the best examples. However, the application of these highstrength steels often leads to formability and manufacturing problems. One formability problem is the springback occurring after sheet metal forming. In the current research, we have dealt mainly with advanced high-strength steels, primarily with dual-phase steels. When applying them, the springback phenomenon is one of the most critical issues. To reduce the tremendous amount of experimental work needed, we also applied numerical simulation using isotropic–kinematic hardening rules. The isotropic–kinematic hardening behavior of a given material in the applied Auto Form numerical package may be characterized with three independent material parameters c, v and K(a detailed explanation of their meaning will be given in the main part of this paper). However, we found that the material data included in simulation packages for these new high-strength steels are not fully adequate. For the determination of more reliable material parameters and to achieve better simulation results, a new testing device was developed. Numerical simulations were performed using the material parameters determined by the new device to show the sensitivity of springback behavior to these material parameters. 展开更多
关键词 Springback Large-strain cyclic deformation High-strength dual-phase steels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部