The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggr...The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.展开更多
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovati...To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.展开更多
The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significa...The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.展开更多
基金National Natural Science Foundation of China under Grant No.11472084Science and Technology Project of Guangdong Province under Grant No.2017B020238006+1 种基金Science and Technology Planning Project of Guangzhou City under Grant No.201704030057Fundamental Research Funds for the Central Universities under Grant No.21619327
文摘The application of fi ber-reinforced polymer (FRP) composites for the development of high-performance composite structural systems has received signifi cant recent research attention. A composite of FRP–recycled aggregate concrete (RAC)–steel column (FRSC), consisting of an outer FRP tube, an inner steel tube and annular RAC fi lled between two tubes, is proposed herein to facilitate green disposal of demolished concrete and to improve the ductility of concrete columns for earthquake resistance. To better understand the seismic behavior of FRSCs, quasi-static tests of large-scale basalt FRSCs with shear connectors were conducted. The infl uence of the recycled coarse aggregate (RCA) replacement percentage, shear connectors and axial loading method on the lateral load and deformation capacity, energy dissipation and cumulative damage were analyzed to evaluate the seismic behavior of FRSCs. The test results show that FRSCs have good seismic behavior, which was evidenced by high lateral loads, excellent ductility and energy dissipation capacity, indicating RAC is applicable in FRSCs. Shear connectors can signifi cantly postpone the steel buckling and increase the lateral loads of FRSCs, but weaken the deformation capacity and energy dissipation performance.
基金National Science Foundation of China under Grant No.51108292,and Qing Lan Project of Jiangsu Province
文摘To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
文摘The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.