H-H joint of "H-jointed SPSP with H-H joint", which is made up of interlocking two H-steel sections of different sizes, is the one of SPSP's joint to improve the hydraulic conductivity. "H-H jointed SPSP with H-H ...H-H joint of "H-jointed SPSP with H-H joint", which is made up of interlocking two H-steel sections of different sizes, is the one of SPSP's joint to improve the hydraulic conductivity. "H-H jointed SPSP with H-H joint" is expected to be applied to a vertical cutoff wall in coastal landfill sites. In H-jointed SPSP with H-H joint, the H-joint is completely imperviousness. H-H joint, however, is pervious at interlocked state because a gap of 8 to 11 mm is left between the interlocking flanges, therefore, a water interception treatment must be conducted to seal the gap. The water shielding treatment of H-H joint is executed by coating the gaps with a water-swelling sheet of paint before its installation. Then, hollow space is generated in H-H joint after treating by water-swelling sheet, and that space can be used effectively. This paper proposes leachate control technologies using H-H joint interior space of SPSP cutoff walls. The possibility of those technologies and hydraulic conductivity of H-jointed SPSP with H-H joints are demonstrated by conducting the hydraulic conductivity test.展开更多
The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under t...The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel.展开更多
Factors directly affecting the extraction rate of the piles pulled out by a vibratory pulling system are summarized and classified into five categories(excitation force,resistance,vibration amplitude,pile plumbness ke...Factors directly affecting the extraction rate of the piles pulled out by a vibratory pulling system are summarized and classified into five categories(excitation force,resistance,vibration amplitude,pile plumbness keeping,and slowing down at the later stage) from the mechanics and engineering practice.Field tests on steel sheet piles extracted by vibratory technique in different soil conditions are conducted to ascertain how these factors affect the extraction rate of a pile with regard to three major actors of vibratory pile pulling:the pile to be extracted,the selected pulling system,and the imposed soil conditions.The extraction rates of three different sheet pile types(having up to four different lengths) pulled out by two different vibratory pulling systems are documented.The piles with different lengths and types,pulled out with or without a clutch,have different extraction rates.The working parameters governing the vibratory hammer,such as excitation force and vibration amplitude,exert significant influences on the rate of pile extraction,especially in the early stages of up-lift process.The extraction rate of the piles driven in different soil conditions is uniform because different extraction resistances mainly refer to shaft friction.The properties of the pile-soil interface influence the extraction rate of the piles,and the extraction rate decreases with the time for which the piles have been buried in the earth.展开更多
文摘H-H joint of "H-jointed SPSP with H-H joint", which is made up of interlocking two H-steel sections of different sizes, is the one of SPSP's joint to improve the hydraulic conductivity. "H-H jointed SPSP with H-H joint" is expected to be applied to a vertical cutoff wall in coastal landfill sites. In H-jointed SPSP with H-H joint, the H-joint is completely imperviousness. H-H joint, however, is pervious at interlocked state because a gap of 8 to 11 mm is left between the interlocking flanges, therefore, a water interception treatment must be conducted to seal the gap. The water shielding treatment of H-H joint is executed by coating the gaps with a water-swelling sheet of paint before its installation. Then, hollow space is generated in H-H joint after treating by water-swelling sheet, and that space can be used effectively. This paper proposes leachate control technologies using H-H joint interior space of SPSP cutoff walls. The possibility of those technologies and hydraulic conductivity of H-jointed SPSP with H-H joints are demonstrated by conducting the hydraulic conductivity test.
文摘The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel.
基金the National Natural Science Foundation of China(Nos.51428901 and 51379122)
文摘Factors directly affecting the extraction rate of the piles pulled out by a vibratory pulling system are summarized and classified into five categories(excitation force,resistance,vibration amplitude,pile plumbness keeping,and slowing down at the later stage) from the mechanics and engineering practice.Field tests on steel sheet piles extracted by vibratory technique in different soil conditions are conducted to ascertain how these factors affect the extraction rate of a pile with regard to three major actors of vibratory pile pulling:the pile to be extracted,the selected pulling system,and the imposed soil conditions.The extraction rates of three different sheet pile types(having up to four different lengths) pulled out by two different vibratory pulling systems are documented.The piles with different lengths and types,pulled out with or without a clutch,have different extraction rates.The working parameters governing the vibratory hammer,such as excitation force and vibration amplitude,exert significant influences on the rate of pile extraction,especially in the early stages of up-lift process.The extraction rate of the piles driven in different soil conditions is uniform because different extraction resistances mainly refer to shaft friction.The properties of the pile-soil interface influence the extraction rate of the piles,and the extraction rate decreases with the time for which the piles have been buried in the earth.