The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which ...The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which changes the structure of the oxide layer.In this study,the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),glow discharge spectrometry(GDS),and X-ray diffraction(XRD).The size and orientation of ferritic grains in the oxide layer were characterized,and the distribution characteristics of the key elements along the thickness direction were determined.The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2,and Fe4N and fcc-Fe phases were also detected.Moreover,the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer;however,some ferritic grains exhibited same orientations as those in the neighboring matrix.Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer.The form of nitrogen enrichment in the oxide layer was analyzed,and the growth mechanism of ferritic grains during the oxide layer formation is proposed.展开更多
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com...To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.展开更多
Plasma rare earth nitriding of nanocrystallized surface layer of 3J33B steel at 350 and 410℃ for different time was studied. The microstructure observation and X-ray diffraction(XRD) analysis show that the nitrid...Plasma rare earth nitriding of nanocrystallized surface layer of 3J33B steel at 350 and 410℃ for different time was studied. The microstructure observation and X-ray diffraction(XRD) analysis show that the nitriding layer consists of compound layer (γ′-Fe4N) and diffusion layer (α-Fe). Lanthanum content profiles in nanocrystallized surface layer were measured using glow discharge spectometry(GDS). The results show that lanthanum can diffuse into the surface layer of the steel to a large depth. Based on the experimental results mentioned above, the diffusion coefficients and activation energy of lanthanum in γ′ phase are calculated to be 1.03×10 -15 cm2/s (350℃), 1.75×10 -15 cm2/s (410℃) and 31.313kJ/mol, respectively.展开更多
In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwa...In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigate...The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigated,the formation mechanism of TFA was analyzed and method to improve the thickness uniformity of the aluminum layer was proposed.The results showed that when the reduction increased,TFA increased gradually.When the reduction was lower than40%,AIT had negligible effect on the TFA,while TFA increased with the decrease of AIT when the reduction was higher than40%.The non-uniformities of the steel surface deformation and the interfacial bonding extent caused by the work-hardened steel surface layer,were the main reasons for the formation of TFA.Adopting an appropriate surface treatment can help to decrease the hardening extent of the steel surface for improving the deformation uniformity during cold roll bonding process,which effectively improved the aluminum thickness uniformity of the embedded aluminum/steel composite sheets.展开更多
The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the midclle of two entirely ...The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the midclle of two entirely different materials: a highway steel box bridge deck and a paved layer, which is used as anticorrosion and waterproof coating for the steel bridge deck. For our study, electrochemical corrosion and pull strength experiments have been selected for the investigation of the corrosion properties of inorganic zinc rich coating, epoxy zinc rich coating and arc sprayed zinc coating. The adhesive strength between the coatings and the panel, and the effect of the coating corrosion on the shear properties of the paved layers including cast asphalt, thermal asphalt mortar, epoxy asphalt and modified asphalt con- crete have been investigated. The results show that the adhesive strength between the coatings and the bridge panel is controlled by the method of pre-processing rust removal. Coating by sandblasting has stronger adhesive strength than coating by shot peening. The results also reveal that shear strength of the paved layer is affected by the corrosion product of zinc coating. The arc sprayed zinc coating has stronger shear strength than zinc rich coatings.展开更多
The weathering steel (Corten B) was exposed to out-door atmosphere of Hanoi (urban site) and Donghoi (marine site). The results showed the protective ability of corrosion product layer formed on weathering steel in th...The weathering steel (Corten B) was exposed to out-door atmosphere of Hanoi (urban site) and Donghoi (marine site). The results showed the protective ability of corrosion product layer formed on weathering steel in the initial stage. The SEM-EDX analysis detected the presence of chromium and copper in the inner layers of corrosion product formed on weathering steel. These elements improved corrosion resistance of corrosion product layers. In addition, the dense α-FeOOH phase were appeared early in corrosion product which is detected by X-ray diffraction and Micro Raman investigations. The results of polarization and EIS measurements also demonstrated the protectiveness of the corrosion product of weathering steel.展开更多
Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (...Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel st...Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel steel. The results showed that although the roughness of the original specimen induced by mechanical processing would diminish to some extent in the experiment, the 0.5 - 1.5 μm thick layer of ultrafine microstructure on the original mechanically-processed specimen surface would still become micro-cracks and small spalling pits due to spalling, and would further evolve into fatigue crack source. Additionally, even under the impact of the load that was not adequate to make the material reach fatigue limit, the ferrite in the microstructure underwent plastic deformation, which led the refinement of proeutectoid ferrite grains. During the experiment, the hardening and the refinement caused by plastic deformation consisted with the theory that dislocation gave rise to plastic deformation and grain refinement. The distribution laws of hardness and ferrite grain sizes measured could be explained by the distribution law of the shearing stress in the subsurface.展开更多
To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicat...To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicated that the supersaturated copper dispersedly precipitated in grain interior and crystalboundaries and formed the vermicular structure.The tribologicaltests indicated that the friction coefficient of the Cu alloyed layer was lower than that of the stainless steels.The wear rate of stainless steelin the presence of Cu alloyed layer was approximately 2-fold lower than that in the absence of the alloyed layer.The results of the incrementalforming indicated that the ploughing phenomenon was not observed on the stainless steelin the presence of Cu alloyed layer during the incrementalforming,while the stainless steelpresented the deep ploughing.Therefore,Cu alloyed layer on stainless steelexhibited excellent self-lubrication and forming properties.展开更多
The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference b...The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.展开更多
CuAlBe alloy is an attractive shape memory alloy with many important usages in industrial field, in order to spread its range of application it is desirable to be able to join CuAlBe soundly with other metallic materi...CuAlBe alloy is an attractive shape memory alloy with many important usages in industrial field, in order to spread its range of application it is desirable to be able to join CuAlBe soundly with other metallic materials, for example stainless steel; however the weldability between CuAlBe alloy and stainless steel has never been studied, therefore an experimental investigation of different transition metals was carried out in the diffusion bonding joints of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti). The microstructure and phase composition of the joint were analyzed by SEM, EPMA and X ray diffraction. The following conclusions have been drawn: 1) The joint strength with Ni interlayer is higher than that with Cu interlayer when the welding parameters are the same; 2) When Ni interlayer is thinner, Al will interact with Ni and Fe, and the intermetallic compounds such as Fe 3Al are formed in the interface, which decreases the strength of the joints; 3) When the bonding temperature is higher, because the diffusion of Cu in Ni is faster than Ni in Cu, a Kirkendall effect occurs, which also decreases the strength of the joints.展开更多
Corrosion rates of 10PCuRE steels with different rate earth contents and plain carbon steel were studied by dry-wet cycle immersion test. The corrosion resistance of rust layer on rare earths weathering steel and carb...Corrosion rates of 10PCuRE steels with different rate earth contents and plain carbon steel were studied by dry-wet cycle immersion test. The corrosion resistance of rust layer on rare earths weathering steel and carbon steel was studied through the electrochemical means of polarization test and electrochemical impedance spectra. The difference of corrosion resistance of testing steels was analyzed through electrochemical means. The 10PCuRE steels whose rare earths content is smaller than 0.016% have good performance of corrosion resistance because corrosion potential of the steel is positive and resistance of rust layer is large. The results showed that rare earths of proper content could diminish corrosion tendency and promote the formation of the steady and compact rust layer.展开更多
In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The re...In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The results show that ion plated stainless steel multi layer films are fine grained double phase steel films of austenites and ferrites.Cross section film growing microstructures can be divided into three zones: fine equiaxed crystals, fine columnar crystals and coarse columnar crystals. Interfaces in multi layer films can promote fine grained growing and interrupt columnar grained growing,and improve properties of film materials.展开更多
The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic micr...The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.展开更多
An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting.Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focuse...An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting.Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar.Coating layer was fabricated with various process parameters such as laser power,scan rate and fill spacing.Surface quality and coating thickness were measured and analyzed.Three different surface patterns,such as typeⅠ,typeⅡand type Ⅲ,are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing,50-350 mm/s of scan rate and 40 μm of fill spacing,10-150 mm/s of scan rate.The maximum coating thickness is increased with power elevation or scan rate drop,and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.展开更多
With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the com...With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the compound layer. The results show that the compound layer of plasma nitriding can delay the nucleation of heat cracks and hold back the propagation of heat cracks from surface to substrate because of its high hardness and strength. On the other land, the heat checking expands faster with the compound layer on the surface than that without it. After 3000 cycles of thermal fatigue test, both heat cracks with the compound layer are wider than the another without compound layer and the number of heat cracks of the former is more from the view of cross section.展开更多
In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in wa...In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-IC-18-006)
文摘The production of low-temperature reheated grain-oriented silicon steel is mainly based on the acquired inhibitor method.Due to the additional nitriding process,a high nitrogen content exists in the oxide layer,which changes the structure of the oxide layer.In this study,the structure of the surface oxide layer after nitriding was analyzed by scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD),glow discharge spectrometry(GDS),and X-ray diffraction(XRD).The size and orientation of ferritic grains in the oxide layer were characterized,and the distribution characteristics of the key elements along the thickness direction were determined.The results show that the oxide layer of the steel sample mainly comprised particles of Fe2SiO4 and spherical and lamellar SiO2,and Fe4N and fcc-Fe phases were also detected.Moreover,the size and orientation of ferritic grains in the oxide layer were different from those of coarse matrix ferritic grains beneath the oxide layer;however,some ferritic grains exhibited same orientations as those in the neighboring matrix.Higher nitrogen content was detected in the oxide layer than that in the matrix beneath the oxide layer.The form of nitrogen enrichment in the oxide layer was analyzed,and the growth mechanism of ferritic grains during the oxide layer formation is proposed.
基金the Technical Specification for Fiber Reinforced ConcreteStructure (No. CECS:2004 2000jb15)
文摘To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.
文摘Plasma rare earth nitriding of nanocrystallized surface layer of 3J33B steel at 350 and 410℃ for different time was studied. The microstructure observation and X-ray diffraction(XRD) analysis show that the nitriding layer consists of compound layer (γ′-Fe4N) and diffusion layer (α-Fe). Lanthanum content profiles in nanocrystallized surface layer were measured using glow discharge spectometry(GDS). The results show that lanthanum can diffuse into the surface layer of the steel to a large depth. Based on the experimental results mentioned above, the diffusion coefficients and activation energy of lanthanum in γ′ phase are calculated to be 1.03×10 -15 cm2/s (350℃), 1.75×10 -15 cm2/s (410℃) and 31.313kJ/mol, respectively.
文摘In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
基金Project(2013AA031301)supported by National High-tech Research and Development Program of ChinaProject(51104016)supported by National Natural Science Foundation of ChinaProject(BM2014006)supported by Jiangsu Key Laboratory for Clad Materials,China
文摘The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigated,the formation mechanism of TFA was analyzed and method to improve the thickness uniformity of the aluminum layer was proposed.The results showed that when the reduction increased,TFA increased gradually.When the reduction was lower than40%,AIT had negligible effect on the TFA,while TFA increased with the decrease of AIT when the reduction was higher than40%.The non-uniformities of the steel surface deformation and the interfacial bonding extent caused by the work-hardened steel surface layer,were the main reasons for the formation of TFA.Adopting an appropriate surface treatment can help to decrease the hardening extent of the steel surface for improving the deformation uniformity during cold roll bonding process,which effectively improved the aluminum thickness uniformity of the embedded aluminum/steel composite sheets.
基金Project BK2005020 supported by the Natural Science Foundation of the Jiangsu Province
文摘The corrosion of the anticorrosion coating and the defects of the asphalt concrete paved layer have been investigated on long-span steel box bridge decks. The anticorrosion coating lies in the midclle of two entirely different materials: a highway steel box bridge deck and a paved layer, which is used as anticorrosion and waterproof coating for the steel bridge deck. For our study, electrochemical corrosion and pull strength experiments have been selected for the investigation of the corrosion properties of inorganic zinc rich coating, epoxy zinc rich coating and arc sprayed zinc coating. The adhesive strength between the coatings and the panel, and the effect of the coating corrosion on the shear properties of the paved layers including cast asphalt, thermal asphalt mortar, epoxy asphalt and modified asphalt con- crete have been investigated. The results show that the adhesive strength between the coatings and the bridge panel is controlled by the method of pre-processing rust removal. Coating by sandblasting has stronger adhesive strength than coating by shot peening. The results also reveal that shear strength of the paved layer is affected by the corrosion product of zinc coating. The arc sprayed zinc coating has stronger shear strength than zinc rich coatings.
文摘The weathering steel (Corten B) was exposed to out-door atmosphere of Hanoi (urban site) and Donghoi (marine site). The results showed the protective ability of corrosion product layer formed on weathering steel in the initial stage. The SEM-EDX analysis detected the presence of chromium and copper in the inner layers of corrosion product formed on weathering steel. These elements improved corrosion resistance of corrosion product layers. In addition, the dense α-FeOOH phase were appeared early in corrosion product which is detected by X-ray diffraction and Micro Raman investigations. The results of polarization and EIS measurements also demonstrated the protectiveness of the corrosion product of weathering steel.
基金Supported by National Natural Science Foundation of China (50874033).
文摘Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
文摘Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel steel. The results showed that although the roughness of the original specimen induced by mechanical processing would diminish to some extent in the experiment, the 0.5 - 1.5 μm thick layer of ultrafine microstructure on the original mechanically-processed specimen surface would still become micro-cracks and small spalling pits due to spalling, and would further evolve into fatigue crack source. Additionally, even under the impact of the load that was not adequate to make the material reach fatigue limit, the ferrite in the microstructure underwent plastic deformation, which led the refinement of proeutectoid ferrite grains. During the experiment, the hardening and the refinement caused by plastic deformation consisted with the theory that dislocation gave rise to plastic deformation and grain refinement. The distribution laws of hardness and ferrite grain sizes measured could be explained by the distribution law of the shearing stress in the subsurface.
基金Funded by the National Natural Science Foundation of China(Nos.51245010 and 51405242)the Natural Science Foundation of Jiangsu Province,China(No.BK2012463)
文摘To solve the problems of poor forming and easy adhesion of the stainless steel,Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique.The experimentalresults indicated that the supersaturated copper dispersedly precipitated in grain interior and crystalboundaries and formed the vermicular structure.The tribologicaltests indicated that the friction coefficient of the Cu alloyed layer was lower than that of the stainless steels.The wear rate of stainless steelin the presence of Cu alloyed layer was approximately 2-fold lower than that in the absence of the alloyed layer.The results of the incrementalforming indicated that the ploughing phenomenon was not observed on the stainless steelin the presence of Cu alloyed layer during the incrementalforming,while the stainless steelpresented the deep ploughing.Therefore,Cu alloyed layer on stainless steelexhibited excellent self-lubrication and forming properties.
文摘The main chemical composition of pyrolysis carbon black of waste tires is C,O,Cu,Zn and so on.The content of ash and fine powder in pyrolysis carbon black is high,and the 300%elongation stress is high.The difference between pyrolysis carbon black and furnace black N326,which is commonly used in rubber,is obvious compared with chemical property.The pyrolysis carbon black was used to replace furnace black N326 in the transition layer of all steel load Radial tire rubber through experimental study.It was found that the compression heat generation and dynamic loss(Tanδ)of the blend rubber before and after aging were obviously reduced,the elongation at break and resilience increased,while the tensile stress and tear strength decreased by 100%and 300%,but the hardness and tensile strength changed little before and after aging.According to the latest raw material price calculation,15 used tire pyrolysis carbon black instead of furnace carbon black N326 used in all steel Radial tire transition layer rubber application,excluding labor costs,electricity and equipment depreciation,a ton of blended rubber saves about$22.86 in production costs.
文摘CuAlBe alloy is an attractive shape memory alloy with many important usages in industrial field, in order to spread its range of application it is desirable to be able to join CuAlBe soundly with other metallic materials, for example stainless steel; however the weldability between CuAlBe alloy and stainless steel has never been studied, therefore an experimental investigation of different transition metals was carried out in the diffusion bonding joints of Cu alloys (CuAlBe) to stainless steel (1Cr18Ni9Ti). The microstructure and phase composition of the joint were analyzed by SEM, EPMA and X ray diffraction. The following conclusions have been drawn: 1) The joint strength with Ni interlayer is higher than that with Cu interlayer when the welding parameters are the same; 2) When Ni interlayer is thinner, Al will interact with Ni and Fe, and the intermetallic compounds such as Fe 3Al are formed in the interface, which decreases the strength of the joints; 3) When the bonding temperature is higher, because the diffusion of Cu in Ni is faster than Ni in Cu, a Kirkendall effect occurs, which also decreases the strength of the joints.
文摘Corrosion rates of 10PCuRE steels with different rate earth contents and plain carbon steel were studied by dry-wet cycle immersion test. The corrosion resistance of rust layer on rare earths weathering steel and carbon steel was studied through the electrochemical means of polarization test and electrochemical impedance spectra. The difference of corrosion resistance of testing steels was analyzed through electrochemical means. The 10PCuRE steels whose rare earths content is smaller than 0.016% have good performance of corrosion resistance because corrosion potential of the steel is positive and resistance of rust layer is large. The results showed that rare earths of proper content could diminish corrosion tendency and promote the formation of the steady and compact rust layer.
文摘In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The results show that ion plated stainless steel multi layer films are fine grained double phase steel films of austenites and ferrites.Cross section film growing microstructures can be divided into three zones: fine equiaxed crystals, fine columnar crystals and coarse columnar crystals. Interfaces in multi layer films can promote fine grained growing and interrupt columnar grained growing,and improve properties of film materials.
文摘The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.
基金supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund)grants-in-aid for the National Core Research Center Program from MOST/KOSEF
文摘An attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel was performed with selective laser melting.Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200 W fiber laser which can be focused to 80 μm and atmospheric chamber which can control atmospheric pressure with N2 or Ar.Coating layer was fabricated with various process parameters such as laser power,scan rate and fill spacing.Surface quality and coating thickness were measured and analyzed.Three different surface patterns,such as typeⅠ,typeⅡand type Ⅲ,are shown with various test conditions and smooth regular pattern is obtained under the conditions as 10 μm of fill spacing,50-350 mm/s of scan rate and 40 μm of fill spacing,10-150 mm/s of scan rate.The maximum coating thickness is increased with power elevation or scan rate drop,and average thickness of 10 μm fill spacing is lower than that of 40 μm fill spacing.
文摘With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the compound layer. The results show that the compound layer of plasma nitriding can delay the nucleation of heat cracks and hold back the propagation of heat cracks from surface to substrate because of its high hardness and strength. On the other land, the heat checking expands faster with the compound layer on the surface than that without it. After 3000 cycles of thermal fatigue test, both heat cracks with the compound layer are wider than the another without compound layer and the number of heat cracks of the former is more from the view of cross section.
文摘In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.