The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol...The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.展开更多
The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), ...The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scan- ning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally de- creased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer forma- tion, and integral layer formation.展开更多
Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the c...Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.展开更多
The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded c...The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.展开更多
The tensile properties and fracture surface of 07MnNiCrMoVDR steel welded joint at low temperature have been studied by universal testing machine and scanning electron microscope. The results show that the tensile pro...The tensile properties and fracture surface of 07MnNiCrMoVDR steel welded joint at low temperature have been studied by universal testing machine and scanning electron microscope. The results show that the tensile properties of 07MnNiCrMoVDR steel welded joint are greatly affected by temperature. Tensile strength and yield strength of 07MnNiCrMoVDR steel welded joint increase, but elongation and reduction of area decrease with temperature decreasing. The macro-fracture of 07 MnNiCrMoVDR steel welded joint exhibits that the shear lip is not significant and micro-fracture makes up of dimpled fracture and tear fracture, and dimple becomes tiny and uniform with temperature decreasing.展开更多
The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this k...The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed.展开更多
A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sa...A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.展开更多
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a...Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.展开更多
Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-weld...Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.展开更多
The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/...The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 mm. The interfacial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property.展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
SAF2507 plates ( 12 mm thickness ) were welded using shield metal arc welding (SMAW) process with E2594 electrode. The microstructure, o-phase, and impact fraetograph of the welded joints were analyzed using optic...SAF2507 plates ( 12 mm thickness ) were welded using shield metal arc welding (SMAW) process with E2594 electrode. The microstructure, o-phase, and impact fraetograph of the welded joints were analyzed using optical microscope and scanning electron mieroseope. The results show that the fusion zone consists of ferrite, chromium nitride, and secondary aastenite precipitation when welding is performed at low heat input (0. 5 kJ/mm). However, the increase in heat input causes precipitation of brittle o" phase at the y/c~ interface in weld metal and heat-affected zone, as well as a brittle fracture along the grain boundary. Heat input in the range of O. 5 kJ/mm to 1.5 kJ/mm is suitable for joining SAF2507 plates.展开更多
The resistance of pipeline steel joint welded by submerged arc welding to stress corrosion cracking (SCC) at its different regions in boiling mixed nitrate solution and in H,S saturated solution at room temperature is...The resistance of pipeline steel joint welded by submerged arc welding to stress corrosion cracking (SCC) at its different regions in boiling mixed nitrate solution and in H,S saturated solution at room temperature is examined by the constant-load tension method. The result shows that when tested in nitrate, the weld metal may be the weakest link of the joint if the welding material doesn't match well. The resistance to SCC of the joint in H2S is very low, especially at the bond and coarse grain zone and is closely dependent on the metallurgical quality of base metal.展开更多
The fracture toughness of OS-F101 415F pipeline steel and its welded joint had been systematically studied. The present results suggest that OS-F101 415F pipeline steel and its welded joint all have relatively high fr...The fracture toughness of OS-F101 415F pipeline steel and its welded joint had been systematically studied. The present results suggest that OS-F101 415F pipeline steel and its welded joint all have relatively high fracture toughness values at 0℃, which are higher than 0.30 mm. The main reason for such results is the over 80% acicular ferrite in their mwrostructure展开更多
The cavitation erosion of weld joint and base metal of China low activation martensitic(CLAM)steel in liquid lead-bismuth eutectic alloy(LBE)at 550°C was investigated to simulate the cavitation erosion of the...The cavitation erosion of weld joint and base metal of China low activation martensitic(CLAM)steel in liquid lead-bismuth eutectic alloy(LBE)at 550°C was investigated to simulate the cavitation erosion of the first wall and the nuclear main pump impeller in the accelerator driven sub-critical system(ADS).A suit of ultrasonic cavitation facility was self-designed to study the cavitation erosion.By studying the surface micro topography,roughness and mean pit depth of the tested specimens,it was found that some crater clusters and large scale cracks appeared on the tested specimen surface after the formation of numerous single craters,and the base metal exhibited much better cavitation erosion resistance than the weld bead due to the difference in their mechanical properties and microstructures.In addition,by comparing the results of static corrosion and cavitation erosion,it could be concluded that the cavitation erosion and the dissolution and oxidation corrosion in liquid LBE would accelerate mutually.展开更多
This paper describes the alloy design philosophy for the improvement of long-term creep strength of tempered martensitic 9Cr steel,including welded joints.The creep life t_r is inversely proportional to the minimum cr...This paper describes the alloy design philosophy for the improvement of long-term creep strength of tempered martensitic 9Cr steel,including welded joints.The creep life t_r is inversely proportional to the minimum creep rateε_(min) times the increase in creep rate by strain dlnε/dεin the acceleration region as t_r = 1.5/[(ε_(min)) (dlnε/dε)].The parametersε_(min) and dlnε/dεare closely correlated with the time to minimum creep rate t_m and the strain to minimum creep rateε_m,which characterize the creep deformation behavior in the transient region.The boundary and sub-boundary hardening is shown to be the most important strengthening mechanism in creep of 9Cr steel and is enhanced by fine dispersions of precipitates along boundaries.The addition of boron reduces the coarsening rate of M_(23)C_6 carbides along boundaries near prior austenite grain boundaries during creep.The enhancement of boundary and sub-boundary hardening increases the t_m and decreases theε_(min),which improves the creep life.The boundary and sub-boundary hardening is significantly reduced in fine-grained region of heataffected -zone(HAZ) of conventional steel P92 welded joints,promoting TypeⅣfracture.In NIMS 9Cr boron steel welded joints,the distribution of carbonitrides along boundaries are substantially the same between the HAZ and base metal,suppressing the TypeⅣfracture.展开更多
Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel ...Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.展开更多
In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of...In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of Eurocode 1993. This has resulted in limited use of Kazakhstani structural steel in construction. The feasibility of using structural steel in welded joints has been experimentally investigated. To verify the application of such joints in construction, including earthquake engineering, experimental studies of welded joints made of structural steel produced by Arcelor-Mittal in Temirtau have been carried out. In total, 7 types of structural steel of various thicknesses were selected. Five specimens have been used in each series of tests. The Brinell hardness values of the weld joint, yield strength of steel and tensile strength, relative rupture strain were determined. It was found that for all types of structural steel, the quality of weld joints complied with the requirements of Eurocode 1993—a sample rupture appeared along the plates (main body of the metal), not along the weld joints. It has been established that structural steel produced in the Republic of Kazakhstan fully complies with the requirements of Eurocode 1993. The studies on the dependence of Brinell hardness values of weld joint steel on the yield strength, tensile strength and relative rupture strain have been carried out. The correlation dependences between the values of yield strength of steel and tensile strength, relative rupture strain and BH Brinell hardness were studied. The results of work will allow for significantly increasing the use of Kazakhstani structural steel in seismic and conventional areas of the Republic of Kazakhstan.展开更多
The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the ...The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.展开更多
Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affe...Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded joints of present steels showed no Type Ⅳ fractures and much better creep lives than those of conventional steels.展开更多
基金financially supported by the Chief Expert (Engineer) Project of Jiangsu Provincial Association for Science (No. 2012-09)
文摘The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT.
基金financial support from the Natural Science Foundation of China (No. 51371034)
文摘The welded joints of 3Cr pipeline steel were fabricated with commercial welding wire using the gas tungsten arc welding (GTAW) technique. Potentiodynamic polarization curves, linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), scan- ning electron microscopy (SEM), and energy-dispersive spectrometry (EDS) were used to investigate the corrosion resistance and the growth of a corrosion film on the weld zone (WZ). The changes in electrochemical characteristics of the film were obtained through fitting of the EIS data. The results showed that the average corrosion rate of the WZ in CO2 environments first increased, then fluctuated, and finally de- creased gradually. The formation of the film on the WZ was divided into three stages: dynamic adsorption, incomplete-coverage layer forma- tion, and integral layer formation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51675336,U1660101).
文摘Fracture toughness property is of significant importance when evaluating structural safety.The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results.When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution,it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors.In recent years,numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior.This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints.The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile,ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation.For the interface of ductile-ductile materials,the strain concentration on the softer material side is responsible for ductile fracture initiation.For the ductile-brittle interface,the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side.In the case of brittle-brittle interface,a careful matching is required,because the strength mismatch decreases the fracture driving force in one side,whereas the driving force in another side is increased.The results are deemed to offer support for the safety assessment of welded structures.
基金The National Key Research and Development Program of China(No.2017YFC0805100),the National Natural Science Foundation of China(No.51578137)the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics.
文摘The fatigue life evaluation of the girth butt weld within the welded cast steel joint was studied based on the extrapolation notch stress method.Firstly,the mesh sensitivity of the finite element model of the welded cast steel joint was analyzed to determine the optimal mesh size.Based on the stress field analysis of the finite element model of the welded cast steel joint at the weld toe and weld root,the sharp model of the extrapolation notch stress method was applied to derive the effective notch stress of the rounded model belonging to the effective notch stress method,in which the key problem is to calculate the extrapolation point C,and the extrapolation point C has an exponential function relationship with the geometric parameters of the welded cast steel joint.By setting different values of geometric parameters,the corresponding value of parameter C is calculated,and then the functional relationship between the extrapolation point C and the geometric parameters can be obtained by the multiple linear regression analysis.Meanwhile,the fatigue life evaluation of the girth butt weld within welded cast steel joints based on the effective notch stress was performed according to the guideline recommended by the IIW(International Institute of Welding).The results indicate that the extrapolation notch stress method can effectively simplify the process of calculating the effective notch stress and accurately evaluate the fatigue life of the girth butt weld within welded cast steel joints.
文摘The tensile properties and fracture surface of 07MnNiCrMoVDR steel welded joint at low temperature have been studied by universal testing machine and scanning electron microscope. The results show that the tensile properties of 07MnNiCrMoVDR steel welded joint are greatly affected by temperature. Tensile strength and yield strength of 07MnNiCrMoVDR steel welded joint increase, but elongation and reduction of area decrease with temperature decreasing. The macro-fracture of 07 MnNiCrMoVDR steel welded joint exhibits that the shear lip is not significant and micro-fracture makes up of dimpled fracture and tear fracture, and dimple becomes tiny and uniform with temperature decreasing.
文摘The interfacial microstructure evolution of 12Cr1MoV/TP347H dissimilar steel welded joints with a nickel-based filler metal during aging was studied in detail to elucidate the mechanism of premature failures of this kind of joints.The results showed that not only a band of granular Cr_(23)C_(6)carbides were formed along the fusion boundary in the ferritic steel during aging,but also a large number of granular or plate-like Cr_(23)C_(6)carbides,which have a cube-cube orientation relationship with the matrix,were also precipitated on the weld metal side of the fu-sion boundary,making this zone be etched more easily than the other zone and become a dark etched band.Stacking faults were found in some Cr_(23)C_(6)carbides.In the as-welded state,deformation twins were observed in the weld metal with a fully austenitic structure.The peak micro-hardness was shifted from the ferritic steel side to the weld metal side of the fusion boundary after aging and the peak value increased signific-antly.Based on the experimental results,a mechanism of premature failures of the joints was proposed.
基金supported by the CNPC (China National Petroleum Corporation) Innovation Foundation under grant No.07E1015
文摘A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.
文摘Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.
文摘Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue disruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded SS400 steel or other components.
文摘The dissimilar material resistance spot welding of galvanized high strength steel and aluminum alloy had been conducted. The welded joint exhibited a thin reaction layer composed of Fe2Al5 and Fe4Al13 phases at steel/aluminum interface. The welded joint presented a tensile shear load of 3.3 kN with an aluminum alloy nugget diameter of 5.7 mm. The interfacial failure mode was observed for the tensile shear specimen and fracture occurred at reaction layer and aluminum alloy fusion zone beside the interface. The reaction layer with compounds was the main reason for reduction of the welded joint mechanical property.
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
文摘SAF2507 plates ( 12 mm thickness ) were welded using shield metal arc welding (SMAW) process with E2594 electrode. The microstructure, o-phase, and impact fraetograph of the welded joints were analyzed using optical microscope and scanning electron mieroseope. The results show that the fusion zone consists of ferrite, chromium nitride, and secondary aastenite precipitation when welding is performed at low heat input (0. 5 kJ/mm). However, the increase in heat input causes precipitation of brittle o" phase at the y/c~ interface in weld metal and heat-affected zone, as well as a brittle fracture along the grain boundary. Heat input in the range of O. 5 kJ/mm to 1.5 kJ/mm is suitable for joining SAF2507 plates.
文摘The resistance of pipeline steel joint welded by submerged arc welding to stress corrosion cracking (SCC) at its different regions in boiling mixed nitrate solution and in H,S saturated solution at room temperature is examined by the constant-load tension method. The result shows that when tested in nitrate, the weld metal may be the weakest link of the joint if the welding material doesn't match well. The resistance to SCC of the joint in H2S is very low, especially at the bond and coarse grain zone and is closely dependent on the metallurgical quality of base metal.
基金This work was financially supported by National Natural Science Foundation of China and Baoshan Iron & Steel Co., Ltd (50334050).
文摘The fracture toughness of OS-F101 415F pipeline steel and its welded joint had been systematically studied. The present results suggest that OS-F101 415F pipeline steel and its welded joint all have relatively high fracture toughness values at 0℃, which are higher than 0.30 mm. The main reason for such results is the over 80% acicular ferrite in their mwrostructure
基金supported by the National Natural Science Foundation of China with Grant Nos.51375216 and 51505197the Open-Fund Research of State Key Lab of Advanced Welding and Joining with Grant No.AWJ-16-M07the Fusion Digital Simulation(FDS)Team for support the CLAM steel
文摘The cavitation erosion of weld joint and base metal of China low activation martensitic(CLAM)steel in liquid lead-bismuth eutectic alloy(LBE)at 550°C was investigated to simulate the cavitation erosion of the first wall and the nuclear main pump impeller in the accelerator driven sub-critical system(ADS).A suit of ultrasonic cavitation facility was self-designed to study the cavitation erosion.By studying the surface micro topography,roughness and mean pit depth of the tested specimens,it was found that some crater clusters and large scale cracks appeared on the tested specimen surface after the formation of numerous single craters,and the base metal exhibited much better cavitation erosion resistance than the weld bead due to the difference in their mechanical properties and microstructures.In addition,by comparing the results of static corrosion and cavitation erosion,it could be concluded that the cavitation erosion and the dissolution and oxidation corrosion in liquid LBE would accelerate mutually.
文摘This paper describes the alloy design philosophy for the improvement of long-term creep strength of tempered martensitic 9Cr steel,including welded joints.The creep life t_r is inversely proportional to the minimum creep rateε_(min) times the increase in creep rate by strain dlnε/dεin the acceleration region as t_r = 1.5/[(ε_(min)) (dlnε/dε)].The parametersε_(min) and dlnε/dεare closely correlated with the time to minimum creep rate t_m and the strain to minimum creep rateε_m,which characterize the creep deformation behavior in the transient region.The boundary and sub-boundary hardening is shown to be the most important strengthening mechanism in creep of 9Cr steel and is enhanced by fine dispersions of precipitates along boundaries.The addition of boron reduces the coarsening rate of M_(23)C_6 carbides along boundaries near prior austenite grain boundaries during creep.The enhancement of boundary and sub-boundary hardening increases the t_m and decreases theε_(min),which improves the creep life.The boundary and sub-boundary hardening is significantly reduced in fine-grained region of heataffected -zone(HAZ) of conventional steel P92 welded joints,promoting TypeⅣfracture.In NIMS 9Cr boron steel welded joints,the distribution of carbonitrides along boundaries are substantially the same between the HAZ and base metal,suppressing the TypeⅣfracture.
文摘Gas dynamic control in welding with consumable electrode in conditions of two-jet gas shielding and its impact on the processes in the welding area and properties of the welded joints from high strength alloyed steel 30HGSA is considered in the paper. The results of a comparative experimental study of controlling the properties of welded joints by changing the gas dynamics of the active shielding gas are given. The impact force of a shielding gas jet on the drop of the electrode metal is 12 times higher in conditions of two-jet gas shielding than in those of single jet shielding. It is found that gas dynamics of the active shielding gas jet determines the formation of the welded joints, their chemical properties and the properties of the welded joints from high strength alloyed steels. The consumable electrode welding method with two-jet gas shielding provides controlled dynamics in the welding area and allows controlling the transfer of the electrode metal, chemical composition of the weld, stabilizing the welding process, it ensures higher mechanical properties of the welded joints.
文摘In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of Eurocode 1993. This has resulted in limited use of Kazakhstani structural steel in construction. The feasibility of using structural steel in welded joints has been experimentally investigated. To verify the application of such joints in construction, including earthquake engineering, experimental studies of welded joints made of structural steel produced by Arcelor-Mittal in Temirtau have been carried out. In total, 7 types of structural steel of various thicknesses were selected. Five specimens have been used in each series of tests. The Brinell hardness values of the weld joint, yield strength of steel and tensile strength, relative rupture strain were determined. It was found that for all types of structural steel, the quality of weld joints complied with the requirements of Eurocode 1993—a sample rupture appeared along the plates (main body of the metal), not along the weld joints. It has been established that structural steel produced in the Republic of Kazakhstan fully complies with the requirements of Eurocode 1993. The studies on the dependence of Brinell hardness values of weld joint steel on the yield strength, tensile strength and relative rupture strain have been carried out. The correlation dependences between the values of yield strength of steel and tensile strength, relative rupture strain and BH Brinell hardness were studied. The results of work will allow for significantly increasing the use of Kazakhstani structural steel in seismic and conventional areas of the Republic of Kazakhstan.
文摘The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.
文摘Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type Ⅳ fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3WSCoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared. The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena, the welded joints of present steels showed no Type Ⅳ fractures and much better creep lives than those of conventional steels.