期刊文献+
共找到544篇文章
< 1 2 28 >
每页显示 20 50 100
Experimental Study on Shear Behavior of New-Type Steel-Concrete Composite Bridge Deck
1
作者 Qiu Zhao Yang Du +2 位作者 Wenping Cai Ming Yang Rui Dong 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第6期66-77,共12页
To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular... To alleviate deck fatigue failure and regular pavement damage,which are congenital deficiencies of highway steel bridge deck structure,this paper proposes a newtype of composite bridge deck,consisting of steel tubular connectors and steel-reactive powder concrete (RPC). Push-out tests were conducted to study the newdeck's shear performance. During the experimental process,specimens were divided into two groups which are composed of steel tubular connectors with or without penetrative bars set in. Then,researchers analyzed destroyed models and mechanisms of the composite structure under shear forces. Results showed that test models in two groups,once destroyed,displayed similar shear fracture,which appeared on the lower margin of the steel tubular wall along the welds. Meanwhile,RPC under the connector,for varied tests,was crushed at the same stage,although the large shear and bending deformation just occurred on connectors with penetrative bars. Additionally,shear capacity of specimens with penetrative bars,compared with the ones without bars,unexpectedly decreased by 20%,but the structural ductility was 1.75 times as much,and the ductility coefficients of specimens were all larger than 3.5,demonstrating certain deformation capacity. 展开更多
关键词 composite bridge deck push-out tests RPC steel TUBULAR connectors failure mode
下载PDF
Dynamic Characteristics of Long -Span Steel -Concrete CompositeBeam Bridge Based on Vehicle -Bridge Coupling Effect
2
作者 WANG Jianxing CAI Ran +1 位作者 JIA Yumeng ZHANG Jianmeng 《吉首大学学报(自然科学版)》 CAS 2024年第5期45-51,共7页
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat... In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192. 展开更多
关键词 highway bridge vehicle-bridge coupling effect steel-concrete composite beam suspension bridge dynamic characteristics
下载PDF
Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge 被引量:5
3
作者 蒲黔辉 白光亮 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期95-101,共7页
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure... Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load. 展开更多
关键词 Stud connector Experimental research steel-concrete composite structure Cable-stayed bridge Internal force distribution
下载PDF
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:5
4
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
下载PDF
Design methods of headed studs for composite decks of through steel bridges in high-speed railway 被引量:1
5
作者 侯文崎 叶梅新 《Journal of Central South University》 SCIE EI CAS 2011年第3期946-952,共7页
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure... Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB. 展开更多
关键词 through steel bridge steel-concrete composite deck mechanical characteristics STUD design method
下载PDF
Structural Performance of Light Weight Multicellular FRP Composite Bridge Deck Using Finite Element Analysis 被引量:1
6
作者 Woraphot Prachasaree Pongsak Sookmanee 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期939-943,共5页
Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to ob... Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to obtain more efficient and cost effective structural materials and systems. Currently, FRP composites are becoming more popular in civil engineering applications. The objectives of this research are to study performance and behavior of light weight multi-cellular FRP composite bridge decks (both module and system levels) under various loading conditions through finite element modeling, and to validate analytical response of FRP composite bridge decks with data from laboratory evaluations. The relative deflection, equivalent flexural rigidity, failure load (mode) and load distribution factors (LDF) based on FE results have been compared with experimental data and discussed in detail. The finite element results showing good correlations with experimental data are presented in this work. 展开更多
关键词 fiber reinforced polymer (FRP) composites bridge deck finite element
下载PDF
Bridge Structures with GFRP Composite Deck
7
作者 Beata Stankiewicz 《Open Journal of Civil Engineering》 2015年第1期53-62,共10页
In this paper, author’s first part of research of GFRP bridge deck (using ASSET fiber line composite modular system) took part at AGH University of Science and Technology Laboratory of Glass Technology and Amorphous ... In this paper, author’s first part of research of GFRP bridge deck (using ASSET fiber line composite modular system) took part at AGH University of Science and Technology Laboratory of Glass Technology and Amorphous Coatings Department. The analysis consisted spectrometer analysis of chemical constitution of glass fiber, identification of material according to Fourier spectroscopy, electronic scan microscopy (SEM/EDAX) and DTA analysis. The modal FEM analysis of chosen footbridge with light GFRP deck has been presented in the paper. 展开更多
关键词 GFRP bridge deck by Material ANALYSIS MODAL ANALYSIS of FOOTbridge composite deck
下载PDF
Research review on steel–concrete composite joint of railway hybrid girder cable-stayed bridges 被引量:2
8
作者 Zhou Shi Jiachang Gu +1 位作者 Yongcong Zhou Ying Zhang 《Railway Sciences》 2022年第2期241-259,共19页
Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me... Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge. 展开更多
关键词 RAILWAY Hybrid girder cable-stayed bridge steel-concrete composite joint STRUCTURE Stress characteristics REVIEW
下载PDF
Identification of Connection Flexibility Effects Based on Load Testing of a Steel-Concrete Bridge
9
作者 Czeslaw Machelski Robert Toczkiewicz 《Journal of Civil Engineering and Architecture》 2012年第11期1504-1513,共10页
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe... In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper. 展开更多
关键词 Abstract: In the case of composite girders an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs used commonly in bridge structures does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position which can be used for verification of steel-concrete interaction in real bridge structures rather composite bridge partial interaction
下载PDF
Design and laboratory evaluation of fog-sealed chip seal on epoxy asphalt pavement for steel bridge deck 被引量:4
10
作者 郑冬 钱振东 +1 位作者 王睿 刘阳 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期101-105,共5页
In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal)... In order to improve the surface performace of epoxy asphalt pavement (EAP) for steel bridge deck, an epoxy asphalt chip seal ( ECS) covered by a cationic emulsified asphalt fog seal (i. e., fog-sealed chip seal) isproposed and a laboratory study is conducted to design and evaluate te fog-sealed chip seal. First, the evaluation indices and methods of te chip seal on steel bridge deck pavement were proposed. Secondly, the worst pavement conditions during te maintenance time were simulated by te small traffic load simulation system MMLS3 and the short-term aging test for minimizing the failure probability of chip seal. Finally, the design parameters of fog-sealed chip seal were determined by the experimental analysis and the performance of the designed fog-sealed chip seal was evaluated in thelaboratory. Results indicate that the proposed simulation method of pavement conditions is effective and the maximal load repetitions on the EAPslab specimen are approximately 925 300 times. Moreover, the designed fog-sealedchip sealcan provide a dense surface with sufficient skid resistance,aggregate-asphalt aahesive performance and interlayer shearing resistance. 展开更多
关键词 pavement maintenance composite seal epoxy asphalt laboratory evaluation pavement condition simulation steel bridge deck pavement
下载PDF
Fatigue evaluation of steel-concrete composite deck in steel truss bridge—A case study
11
作者 Huating CHEN Xianwei ZHAN +1 位作者 Xiufu ZHU Wenxue ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第10期1336-1350,共15页
An innovative composite deck system has recently been proposed for improved structural performance.To study the fatigue behavior of a steel-concrete composite bridge deck,we took a newly-constructed rail-cum-road stee... An innovative composite deck system has recently been proposed for improved structural performance.To study the fatigue behavior of a steel-concrete composite bridge deck,we took a newly-constructed rail-cum-road steel truss bridge as a case study.The transverse stress history of the bridge deck near the main truss under the action of a standard fatigue vehicle was calculated using finite element analysis.Due to the fact that fatigue provision remains unavailable in the governing code of highway concrete bridges in China,a preliminary fatigue evaluation was conducted according to the fib Model Code.The results indicate that flexural failure of the bridge deck in the transverse negative bending moment region is the controlling fatigue failure mode.The fatigue life associated with the fatigue fracture of steel reinforcement is 56 years.However,while the top surface of the bridge deck concrete near the truss cracks after just six years,the bridge deck performs with fatigue cracks during most of its design service life.Although fatigue capacity is acceptable under design situations,overloading or understrength may increase its risk of failure.The method presented in this work can be applied to similar bridges for preliminary fatigue assessment. 展开更多
关键词 Fatigue assessment composite bridge deck rail-cum-road bridge fatigue stress analysis Model Code
原文传递
Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girder bridge
12
作者 Minghong QIU Xudong SHAO +4 位作者 Weiye HU Yanping ZHU Husam H.HUSSEIN Yaobei HE Qiongwei LIU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第6期744-761,共18页
Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength o... Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam. 展开更多
关键词 field test steel-concrete composite beam continuous girder bridge negative bending moment region ultrahigh performance concrete
原文传递
Influence of Random Track Irregularities on Dynamic Response of Bridge/Track Structure/High-Speed Train Systems
13
作者 Marian Klasztomy Monika Podwoma 《Journal of Civil Engineering and Architecture》 2014年第10期1335-1352,共18页
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process... Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness. 展开更多
关键词 steel-concrete composite bridge ballasted track structure high-speed passenger train random vertical track irregularities numerical analysis.
下载PDF
型钢-UHPC轻型组合桥面板及其抗弯性能研究 被引量:2
14
作者 邵旭东 蔡文涌 +1 位作者 曹君辉 刘梦麟 《土木工程学报》 EI CSCD 北大核心 2024年第6期152-168,共17页
正交异性钢桥面是目前800m以上国内外特大跨径钢桥的唯一选择,主因是自重轻、强度高、架设方便。但其存在疲劳开裂风险大、运维成本高的缺点。随着高性能材料UHPC的研发和应用,为构建自重轻、病害少、经济性好的桥面新结构提供了可能性... 正交异性钢桥面是目前800m以上国内外特大跨径钢桥的唯一选择,主因是自重轻、强度高、架设方便。但其存在疲劳开裂风险大、运维成本高的缺点。随着高性能材料UHPC的研发和应用,为构建自重轻、病害少、经济性好的桥面新结构提供了可能性。经过多年研究,作者提出一种新型桥面板结构——型钢-UHPC轻型组合桥面结构,将型钢、钢板条与UHPC组合,桥面板的形成无任何板件焊接,因而具有高抗疲劳性,且与传统钢桥面相比,自重持平、造价减半,可作为除“正交异性钢桥面”外的“第二种”大跨径钢桥的桥面结构方案。该文研究这种轻型组合桥面板预制板及横向接缝的抗弯性能,制作4个条带模型(包括2个预制板试件和2个接缝试件),开展三点弯曲的横向接缝负弯矩试验和预制板正弯矩试验,并对试验结果进行分析;基于“条带法”建立预制板试件极限承载力计算模型,提出接缝试件的UHPC开裂名义拉应力计算方法;基于某斜拉桥应用实例,进行整体计算和局部计算,验证新型组合桥面结构在实桥上应用的可行性。研究结果表明:(1)型钢与UHPC间在极限状态前相对滑移非常小,具有良好的协同受力性能;(2)预制板试件的正弯矩极限承载力以型钢屈服控制,而接缝试件负弯矩极限承载力以UHPC开裂和加密钢筋断裂控制;(3)接缝试件的“T形”接缝、加密钢筋、燕尾形的企口、交错式切割型钢钢条等构造设计对接缝整体抗弯拉性能有很好的提高效果;(4)预制板试件极限承载力计算模型所得计算值与试验值吻合良好,该模型搭配名义拉应力计算方法,可帮助工程实际问题的设计与应用;(5)试验结果与实桥的有限元计算值相比,新型桥面结构均有1.3倍以上的安全系数,新型组合桥面应用于实桥具有可行性。 展开更多
关键词 桥梁工程 型钢-UHPC组合桥面结构 三点弯曲试验 接缝构造 承载能力 裂缝宽度
下载PDF
Design and evaluation of UHPP steel bridge deck pavement for high-temperature and rainy regions
15
作者 Qian Zhendong Zhang Shaojin +1 位作者 Min Yitong Zhao Xinyuan 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期257-265,共9页
To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of... To enhance the serviceability of steel bridge deck pavement(SBDP)in high-temperature and rainy regions,a concept of rigid bottom and flexible top was summarized using engineering practices,which led to the proposal of a three-layer ultra-high-performance pavement(UHPP).The high-temperature rutting resistance and wet-weather skid resistance of UHPP were evaluated through composite structure tests.The internal temperature distribution within the pavement under typical high-temperature conditions was analyzed using a temperature field model.Additionally,a temperature-stress coupling model was employed to investigate the key load positions and stress response characteristics of the UHPP.The results indicate that compared with the traditional guss asphalt+stone mastic asphalt structure,the dynamic stability of the UHPP composite structure can be improved by up to 20.4%.Even under cyclic loading,UHPP still exhibits superior surface skid resistance compared to two traditional SBDPs.The thickness composition of UHPP significantly impacts its rutting resistance and skid resistance.UHPP exhibits relatively low tensile stress but higher shear stress levels,with the highest shear stress occurring between the UHPP and the steel plate.This suggests that the potential risk of damage for UHPP primarily lies within the interlayer of the pavement.Based on engineering examples,introducing interlayer gravel and optimizing the amount of bonding layer are advised to ensure that UHPP possesses sufficient interlayer shear resistance. 展开更多
关键词 steel bridge deck pavement(SBDP) high-temperature environment rainy weather rigid bottom and flexible top temperature field composite structure
下载PDF
钢-UHPC组合桥面板横向负弯矩区受弯性能研究 被引量:1
16
作者 方志 武霄楠 +3 位作者 谭星宇 廖原 阳晏 唐守峰 《工程力学》 EI CSCD 北大核心 2024年第2期112-124,共13页
为明确横向负弯矩作用下,剪力键形式、接缝设置情形、配筋率和钢混界面黏结状态等参数对钢-超高性能混凝土(ultra-high-performance concrete,UHPC)组合板受力性能的影响,完成了8块组合板局部足尺模型静力弯曲试验及有限元参数分析。试... 为明确横向负弯矩作用下,剪力键形式、接缝设置情形、配筋率和钢混界面黏结状态等参数对钢-超高性能混凝土(ultra-high-performance concrete,UHPC)组合板受力性能的影响,完成了8块组合板局部足尺模型静力弯曲试验及有限元参数分析。试验结果表明:开孔板(perfobond leiste,PBL)试件的名义开裂强度(对应最大裂缝宽度为0.05 mm)较栓钉试件提高16.8%;矩形齿缝试件的名义开裂强度较整浇试件降低16%~23%;UHPC层钢筋配筋率从1.96%增加到2.82%时,名义开裂强度提高16.2%;钢板-UHPC界面涂油除黏PBL试件的初裂强度和名义开裂强度较界面黏结试件分别降低10.1%和5.8%。数值分析结果表明:PBL贯穿钢筋的存在、PBL和栓钉间距的减小能有效提高组合板的开裂后刚度;PBL开孔钢板上的孔径和孔间距对组合板的受力性能影响较小。 展开更多
关键词 桥梁工程 超高性能混凝土(UHPC) 组合板 剪力键 受弯性能
下载PDF
平钢板-UHPC组合桥面板纵向抗负弯性能试验研究 被引量:1
17
作者 李传习 肖和育 +3 位作者 贺龙飞 施宇 冯浩轩 裴必达 《工程力学》 EI CSCD 北大核心 2024年第3期91-105,共15页
某大桥次边跨及中跨主梁为钢-UHPC组合梁,钢-UHPC组合梁的桥面板首次采用一种通过PBL剪力键将8 mm平钢板与15 cm的UHPC层连接起来的新型组合桥面体系。为了探究该桥新型钢-UHPC组合桥面板抗负弯矩性能与安全性,完成了2块足尺模型的静力... 某大桥次边跨及中跨主梁为钢-UHPC组合梁,钢-UHPC组合梁的桥面板首次采用一种通过PBL剪力键将8 mm平钢板与15 cm的UHPC层连接起来的新型组合桥面体系。为了探究该桥新型钢-UHPC组合桥面板抗负弯矩性能与安全性,完成了2块足尺模型的静力性能试验,进行了桥梁整体受力和桥面板局部受力计算,以及桥面板抗负弯矩极限承载力构成分析。结果表明:UHPC名义开裂强度达8.90 MPa以上,其值远大于实桥荷载作用下UHPC层上缘的纵桥向最大拉应力,组合桥面板负弯矩抗裂性能良好,能满足工程需求;组合桥面板抗负弯承载力的计算,UHPC受拉本构宜采用三折线模型,抗负弯承载力简化计算的UHPC受拉区等效均布应力折减系数可取0.76,抗负弯承载力状态的受压钢板受力仍处于线弹性阶段,抗负弯破坏模式与抗正弯明显不同,为受拉钢筋拉断;PBL剪力键能保证了钢板与UHPC板整体共同受力;组合桥面板在负弯矩作用下的延性良好,裂宽增长缓慢,UHPC的名义极限强度达名义开裂强度的4.1倍以上,到达极限荷载后,组合板承载力没有明显下降。 展开更多
关键词 平钢板-UHPC组合桥面板 纵向受弯 有限元 足尺模型试验 界面滑移 UHPC特征强度 极限承载力构成
下载PDF
组合桥面板切应力分布规律及横向剪力钉布置
18
作者 张连振 宋谋 +2 位作者 李玉生 樊文胜 吴红林 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期1636-1646,共11页
根据组合桥面板截面的切应力、剪力流分布规律,在混凝土板和钢顶板完全连接的条件下,理论推导出混凝土板和钢顶板的剪力流承担比例,证明组合桥面板层间纵向剪力小于采用组合梁公式得到的计算值.层间完全连接和通过弹簧单元模拟剪力钉离... 根据组合桥面板截面的切应力、剪力流分布规律,在混凝土板和钢顶板完全连接的条件下,理论推导出混凝土板和钢顶板的剪力流承担比例,证明组合桥面板层间纵向剪力小于采用组合梁公式得到的计算值.层间完全连接和通过弹簧单元模拟剪力钉离散连接开展的有限元计算均支持这一观点,验证了组合桥面板截面的竖向剪力主要由腹板承担的观点的正确性.探究横向上剪力钉的布置方式.结果表明,组合桥面板应沿横向全宽布置剪力钉,在腹板两侧进行加密,腹板正上方不宜布设剪力钉. 展开更多
关键词 组合桥面板 剪力流 层间纵向剪力 剪力钉 布置方式
下载PDF
日本UFC桥面板和UFC组合桥面板的研发与应用
19
作者 陈开利(编译) 刘海燕(编译) 《世界桥梁》 北大核心 2024年第3期1-10,共10页
日本较早期建设的城市高速公路桥梁中主要采用钢桥面板和混凝土桥面板。针对钢桥面板的焊缝疲劳开裂和混凝土桥面板的老化现象,研发了超高强度纤维增强混凝土桥面板(UFC桥面板)及UFC组合桥面板,具有高强度、高耐久性。UFC桥面板分为平... 日本较早期建设的城市高速公路桥梁中主要采用钢桥面板和混凝土桥面板。针对钢桥面板的焊缝疲劳开裂和混凝土桥面板的老化现象,研发了超高强度纤维增强混凝土桥面板(UFC桥面板)及UFC组合桥面板,具有高强度、高耐久性。UFC桥面板分为平板型和方格肋型2种类型,可应用于既有公路桥梁的桥面板更换以及新建公路桥梁的桥面板。UFC组合桥面板为在预制PC桥面板顶面设UFC层作为防水层,可省去预制PC桥面板防水层施工,提高施工效率。UFC桥面板和UFC组合桥面板在预制场预制、现场安装,施工便捷,已实际应用在阪神高速公路15号堺线玉出匝道桥桥面板更换工程、阪神高速公路1号环线信浓桥匝道桥新建桥梁工程、东北高速公路宫城白石川桥上行线既有桥面板更换等工程上,可提高桥梁结构的耐久性、减少桥梁养护工作量、降低养护成本。 展开更多
关键词 桥梁工程 UFC桥面板 UFC组合桥面板 预制桥面板 桥面板更换 防水层 耐久性
下载PDF
钢-混凝土组合简支桥面连续结构横向应力分析
20
作者 胡志坚 杜威 +1 位作者 樊文胜 周知 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期34-45,共12页
针对钢-混组合简支梁桥的桥面连续结构开裂等病害,围绕桥面连接板的横桥向应力问题,采用线弹性理论和板的偏微分方程进行分析,得出了桥面连接板挠度和应力的分布函数,建立非线性有限元模型,并进行实桥荷载试验.通过比较理论解、有限元... 针对钢-混组合简支梁桥的桥面连续结构开裂等病害,围绕桥面连接板的横桥向应力问题,采用线弹性理论和板的偏微分方程进行分析,得出了桥面连接板挠度和应力的分布函数,建立非线性有限元模型,并进行实桥荷载试验.通过比较理论解、有限元解和实测试验结果,证实了理论解和有限元的有效性.根据得到的分布函数,发现横桥向和纵桥向上的最大拉应力出现在钢梁端部位置的连接板的上缘.此外,还分析了连接板区域尺寸变化对横桥向应力峰值的影响,包括纵梁端部距支座的长度、纵梁的间距以及连接板区域整体尺寸变化.结果表明:较小的纵梁间距和较长的纵梁端部与支撑之间的距离会导致连接板中的横向拉应力峰值增加,并提高横向拉应力在总应力中的占比,从而导致桥面连接板早于设计荷载开裂.因此对于纵梁间距较小、梁端长度较长的钢-混组合简支梁桥桥面连续结构,仅计算其纵桥向受力性能会导致计算结果偏危险,建议按照本文方法考虑横桥向应力对桥面连接板的影响. 展开更多
关键词 钢-混凝土组合桥(SCCBs) 桥面连接板 横桥向应力分析 有限元法(FEM) 连续桥面简支梁桥
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部