期刊文献+
共找到74,743篇文章
< 1 2 250 >
每页显示 20 50 100
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:1
1
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
下载PDF
Analysis model for damage of reinforced bars in RC beams under contact explosion
2
作者 Chaozhi Yang Zhengxiang Huang +2 位作者 Xin Jia Wei Shang Jian Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期104-118,共15页
The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this stu... The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures. 展开更多
关键词 reinforced concrete beam Contact explosion reinforced bar Damage analysis Residual load-bearing capacity
下载PDF
Reinforced tissue matrix to strengthen the abdominal wall following reversal of temporary ostomies or to treat incisional hernias
3
作者 Spencer P Lake Corey R Deeken Amit K Agarwal 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第3期823-832,共10页
BACKGROUND Abdominal wall deficiencies or weakness are a common complication of tem-porary ostomies,and incisional hernias frequently develop after colostomy or ileostomy takedown.The use of synthetic meshes to reinfo... BACKGROUND Abdominal wall deficiencies or weakness are a common complication of tem-porary ostomies,and incisional hernias frequently develop after colostomy or ileostomy takedown.The use of synthetic meshes to reinforce the abdominal wall has reduced hernia occurrence.Biologic meshes have also been used to enhance healing,particularly in contaminated conditions.Reinforced tissue matrices(R-TMs),which include a biologic scaffold of native extracellular matrix and a syn-thetic component for added strength/durability,are designed to take advantage of aspects of both synthetic and biologic materials.To date,RTMs have not been reported to reinforce the abdominal wall following stoma reversal.METHODS Twenty-eight patients were selected with a parastomal and/or incisional hernia who had received a temporary ileostomy or colostomy for fecal diversion after rectal cancer treatment or trauma.Following hernia repair and proximal stoma closure,RTM(OviTex®1S permanent or OviTex®LPR)was placed to reinforce the abdominal wall using a laparoscopic,robotic,or open surgical approach.Post-operative follow-up was performed at 1 month and 1 year.Hernia recurrence was determined by physical examination and,when necessary,via computed tomo-graphy scan.Secondary endpoints included length of hospital stay,time to return to work,and hospital readmissions.Evaluated complications of the wound/repair site included presence of surgical site infection,seroma,hematoma,wound dehiscence,or fistula formation.RESULTS The observational study cohort included 16 male and 12 female patients with average age of 58.5 years±16.3 years and average body mass index of 26.2 kg/m^(2)±4.1 kg/m^(2).Patients presented with a parastomal hernia(75.0%),in-cisional hernia(14.3%),or combined parastomal/incisional hernia(10.7%).Using a laparoscopic(53.6%),robotic(35.7%),or open(10.7%)technique,RTMs(OviTex®LPR:82.1%,OviTex®1S:17.9%)were placed using sublay(82.1%)or intraperitoneal onlay(IPOM;17.9%)mesh positioning.At 1-month and 1-year follow-ups,there were no hernia recurrences(0%).Average hospital stays were 2.1 d±1.2 d and return to work occurred at 8.3 post-operative days±3.0 post-operative days.Three patients(10.7%)were readmitted before the 1-month follow up due to mesh infection and/or gastrointestinal issues.Fistula and mesh infection were observed in two patients each(7.1%),leading to partial mesh removal in one patient(3.6%).There were no complications between 1 month and 1 year(0%).CONCLUSION RTMs were used successfully to treat parastomal and incisional hernias at ileostomy reversal,with no hernia recurrences and favorable outcomes after 1-month and 1-year. 展开更多
关键词 reinforced tissue matrix reinforced forestomach matrix ILEOSTOMY COLOSTOMY Ostomy takedown Incisional hernia Abdominal wall
下载PDF
Electrochemical Study of the Corrosion Inhibitory Capacity of Calcined Attapulgite in Reinforced Concrete Medium
4
作者 Malang Bodian Kinda Hannawi +3 位作者 Dame Keinde Modou Fall Aveline Darquennes Prince William Agbodjan 《Advances in Materials Physics and Chemistry》 CAS 2024年第5期76-94,共19页
The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main facto... The durability of reinforced concrete structures is greatly influenced by the corrosion of the reinforcement. In addition to air pollution related to the repair of corroded structures, chloride ions are the main factors of corrosion of reinforced concrete structures. This study aims to valorize a clay inhibitor against reinforcement corrosion in reinforced concrete. This clay (Attapulgite) was incorporated into reinforced concretes at different percentages of substitution of calcined attapulgite (0%, 5% and 10%) to cement in the formulation. The corrosion inhibitory power of attapulgite is evaluated in reinforced concretes subjected to the action of chloride ions at different intervals in the NaCl solution (1 day, 21 days and 45 days) by electrochemical methods (zero current chronopotentiometry, polarization curves and electrochemical impedance spectroscopy). This study showed that in the presence of chloride ions, the composition based on 10% attapulgite has an appreciable inhibitory effect with an average inhibitory efficiency of 82%. 展开更多
关键词 ATTAPULGITE Electrochemical Methods INHIBITOR reinforced Concrete
下载PDF
Multi-circular formation control with reinforced transient profiles for nonholonomic vehicles:A path-following framework
5
作者 Jintao Zhang Xingling Shao +1 位作者 Wendong Zhang Zongyu Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期278-287,共10页
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe... This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution. 展开更多
关键词 Multi-circular formation reinforced transient profiles Nonholonomic vehicles Path following
下载PDF
Preparation and Reinforcement Adaptability of Jute Fiber Reinforced Magnesium Phosphate Cement Based Composite Materials
6
作者 刘芯州 郭远臣 +3 位作者 WANG Rui XIANG Kai WANG Xue YE Qing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期999-1009,共11页
To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increas... To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increase the toughness of MPC by adding jute fiber,explore the effects of different amounts of jute fiber on the working and mechanical properties of MPC,and prepare jute fiber reinforced magnesium phosphate cement-based materials(JFRMPC)to reinforce damaged beams.The improvement effect of beam performance before and after reinforcement was compared,and the strengthening and toughening mechanisms of jute fiber on MPC were explored through microscopic analysis.The experimental results show that,as the content of jute fiber(JF)increases,the fluidity and setting time of MPC decrease continuously;When the content of jute fiber is 0.8%,the compressive strength,flexural strength,and bonding strength of MPC at 28 days reach their maximum values,which are increased by 18.0%,20.5%,and 22.6%compared to those of M0,respectively.The beam strengthened with JFRMPC can withstand greater deformation,with a deflection of 2.3 times that of the unreinforced beam at failure.The strain of the steel bar is greatly reduced,and the initial crack and failure loads of the reinforced beam are increased by 192.1%and 16.1%,respectively,compared to those of the unreinforced beam.The JF added to the MPC matrix dissipates energy through tensile fracture and debonding pull-out,slowing down stress concentration and inhibiting the free development of cracks in the matrix,enabling JFRMPC to exhibit higher strength and better toughness.The JF does not cause the hydration of MPC to generate new compounds but reduces the amount of hydration products generated. 展开更多
关键词 magnesium phosphate cement jute fiber reinforcement of damaged beam flexural behavior
下载PDF
Compressive properties of glue-laminated timber circular post modified by basalt fiber reinforced polymer
7
作者 WEI Peixing GUO Wenzhen +2 位作者 ZHAO Mingjing GUO Zhensheng WANG Jianhe 《林业工程学报》 CSCD 北大核心 2024年第5期67-74,共8页
Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-... Glued timber structure is one of the main forms of modern wood architecture,which has gradually developed towards mid-and high-rise buildings.Glue-laminated timber(GLT)is comprised of several laminates of parallel-to-grain dimension lumber that are bonded together with durable,moisture resistant structural adhesives.GLT can be used in horizontal applications as a beam and in vertical applications as a post.So,its compressive performance has a significant impact on structural safety.Fiber reinforced polymers(FRPs)were commonly used to improve the bearing capacity of GLT components,and the structural and process parameters largely determined the reinforcement effect.This study was aimed at investigating the influence of structural and process parameters on the axial compression performance of GLT components.Three wrapping methods(middle-part,end-part and full wrapping)and three lengths(0.6,0.8,and 1.0 m)of wood post specimens were designed in this work and the axial compression performance and ductility of GLT post specimens modified by basalt fiber reinforced polymer(BFRP)were studied.The results showed that the effect of different BFRP wrapping methods on the compressive strength and elastic modulus of laminated wood was not statistically significant(P>0.05).The compressive bearing capacity of unreinforced GLT posts decreased with the increase of aspect ratio.The GLT posts with middle-part and end-part wrapping still followed this pattern,while the compressive bearing capacity of GLT posts with full wrapping showed a pattern of first decreasing and then increasing.For GLT with low aspect ratios(4.0 or 5.3),there was no correlation between the wrapping method and the compressive bearing capacity,while the compressive bearing capacity of GLT with a high aspect ratio(6.7)for middle-part,end-part and full wrapping increased by 3.5%,7.5%and 9.7%,respectively.Compared to the unreinforced group,the ultimate axial compressive strength and modulus of elasticity(MOE)of the 6-E series specimens reinforced at both ends decreased by 2.58%and 6.70%,respectively.The ultimate axial compressive strength of the 8-E specimens reinforced at both ends increased by 8.62%and the MOE decreased by 1.91%.The compressive strength of the 10-E specimens reinforced at both ends increased by 7.51%and the MOE increased by 8.14%.The failure modes of GLT with different aspects were consistent under the same BFRP wrapping,while the failure modes of GLT with the same aspect ratio were different for different BFRP wrapping methods.The ductility performance of GLT with different aspects ratio was improved by the BFRP wrapping. 展开更多
关键词 basalt fiber reinforced polymer(BFRP) GLT circular post bearing performance
下载PDF
Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method
8
作者 Xiaozhou Xia Changsheng Qin +2 位作者 Guangda Lu Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2257-2276,共20页
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac... Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures. 展开更多
关键词 Fracture phase field corrosion-induced cracking non-uniform corrosion expansion protective layer thickness reinforcement concrete
下载PDF
Numerical modelling for predicting corrosion initiation life of reinforced concrete square piles under reverse-seepage pressure
9
作者 WANG Rong-bo WU Wen-bing +3 位作者 HE Si-hong XIAO Liang WEN Min-jie MEI Guo-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3596-3611,共16页
Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresea... Square piles of reinforced concrete(RC)in marine environments are susceptible to chloride-inducedcorrosion.A novel reverse-seepage technique(RST)is applied to square piles to block the intrusion of chlorides.Thisresearch introduces a computational model designed to predict the lifespan of corrosion initiation in reinforced concretesquare piles when applied reverse-seepage pressure.The model considers the impacts of chloride binding and the tripletime-dependence property among the permeability,the corrected surface chloride concentration,and the diffusioncoefficient.The proposed numerical model is solved using the alternating direction implicit(ADI)approach,and itsaccuracy and reliability are evaluated by contrasting the computational outcomes with the analytical solution andexperimental results.Furthermore,the primary factors contributing to the corrosion of reinforced concrete square pilesare analyzed.The results indicate that applying RST can decrease the chloride penetration depth and prolong the lifespanof corrosion initiation in square piles.The water-cement ratio and reverse seepage pressure are the most influentialfactors.A water pressure of 0.4 MPa can double the life of concrete,and the durable life of concrete with a water-cementratio of 0.3 can reach 100 years. 展开更多
关键词 reverse-seepage technique chloride ion intrusion alternating direction implicit method reinforced concrete square pile corrosion initiation life
下载PDF
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
10
作者 Sonia Benkhellat Mohammed Kadri Abdelghani Seghir 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期609-623,共15页
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte... In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%. 展开更多
关键词 reinforced concrete silo perfectly matched layers soil-structure interaction granular material-structure interaction effective seismic input method damage index
下载PDF
Characterization and Modeling of Reinforced Earth Structures
11
作者 Tchamiè David Midikizi Oustasse Abdoulaye Sall +3 位作者 Déthié Sarr Cheikh Ibrahima Tine Ndeye Seynabou Ndiaye Makhaly Ba 《Open Journal of Applied Sciences》 2024年第10期2943-2954,共12页
The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including t... The aim of this study is to characterize soil/reinforcement interaction in reinforced earth structures. The study showed that the internal behavior of this type of structure depends on a number of factors, including the engineering backfill, the reinforcement and the soil/reinforcement interaction. The study also showed that the soil-reinforcement interaction phenomenon is a fairly complex mechanism that depends on the applied load, the geometry of the structure, the characteristics of the soil and a set of parameters characterizing the nailing: density, number and length of reinforcements, inclination of the reinforcements in relation to the sliding surface, mechanical characteristics of the reinforcements and, in particular, the relative stiffness of the reinforcements and the soil. The results showed that the tensile forces developed in the reinforcement are not entirely reversible, and that the soil at the interface undergoes permanent deformation, leading to the appearance of irreversible tensile forces in the reinforcement. 展开更多
关键词 reinforced Earth Structures MODELING Earth/reinforcement Interaction
下载PDF
Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls
12
作者 Lianhua Ma Min Huang Linfeng Han 《Structural Durability & Health Monitoring》 EI 2024年第6期853-869,共17页
Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil... Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated. 展开更多
关键词 reinforced earth retaining walls time history dynamic analysis finite element
下载PDF
Optimal Design of Drying Process of the Potatoes withMulti-Agent Reinforced Deep Learning
13
作者 Mohammad Yaghoub Abdollahzadeh Jamalabadi 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期511-536,共26页
Heat and mass transport through evaporation or drying processes occur in many applications such as food processing,pharmaceutical products,solar-driven vapor generation,textile design,and electronic cigarettes.In this... Heat and mass transport through evaporation or drying processes occur in many applications such as food processing,pharmaceutical products,solar-driven vapor generation,textile design,and electronic cigarettes.In this paper,the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air fluid flow governed by Darcy’s law in two-dimensional is highlighted.Governing equations of mass conservation,momentumconservation,multiphase fluid flowin porousmedia,heat transfer,and transport of participating fluids and gases through evaporation from liquid to gaseous phase are solved simultaneously.In this model,the variable is block locations,the object function is changing water saturation inside the porous medium and the constraint is the constant mass of porous material.It shows that there is an optimal configuration for the purpose of water removal from the specimen.The results are compared with experimental and analyticalmethods Benchmark.Then for the purpose of configuration optimization,multi-agent reinforcement learning(MARL)is used while multiple porous blocks are considered as agents that transfer their moisture content with the environment in a real-world scenario.MARL has been tested and validated with previous conventional effective optimization simulations and its superiority proved.Our study examines and proposes an effective method for validating and testing multiagent reinforcement learning models and methods using a multiagent simulation. 展开更多
关键词 MULTI-AGENT reinforced learning heat transfer mass transfer DRYING darcy flow MOISTURE optimization
下载PDF
Experimental Study of the Anti-Corrosion Performance of Montmorillonite K-10 on Rebar in HCl Environment: Application in Mortar for the Rehabilitation of Reinforced Concrete Degraded by Corrosion
14
作者 Malang Bodian Mariétou Barro Diop-Fall +3 位作者 Dame Keinde El-Hadji Dieye Modou Gningue Diop Modou Fall 《Open Journal of Civil Engineering》 2024年第2期155-167,共13页
This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using fr... This work first investigates the corrosion-inhibiting behavior of montmorillonite K-10 on reinforcing steel. The corrosion-inhibiting power of the clay (Montmorillonite) is determined in a medium HCl (C = 1N) using free corrosion potential monitoring, Tafel potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results of this study showed a satisfactory corrosion-inhibiting efficiency of around 72.665% for the optimum content of 1%. This is due to the presence of a stable oxide layer that protects the metal against corrosion. To validate the concept of montmorillonite as a corrosion inhibitor in repair mortar, we now turn to the influence of montmorillonite on the mechanical properties of mortars in the hardened state. In this part, montmorillonite K-10 is added to the mortar by partial substitution of the cement by 5% and 10% of the cement mass. The aim of this study is to ensure that the addition of this clay to the mortar composition will not have a negative effect on its compressive and flexural strengths. The results of the compression and flexural tests showed that the presence of montmorillonite in the mortar improved flexural and compressive strengths for the different compositions studied. 展开更多
关键词 Clay reinforced Concrete CORROSION Inhibitor REHABILITATION Electrochemical Methods
下载PDF
Modelling and Sizing of a Floor Reinforced by Ballasted Columns Intended to Support a Tank
15
作者 Cheikh Diallo Diène Madièye Fall Souka Bidzha Harlin Sylvaire 《Open Journal of Civil Engineering》 2024年第3期405-420,共16页
This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations t... This work aims to study the modeling and sizing of a floor reinforced by ballasted columns. We are studying the system of reinforcement by ballasted columns because this technique is able to replace deep foundations that are technically difficult to realize and their cost is higher. The modelling and dimensioning of foundations on a ballasted column will be an important contribution to the state of the art of this method because it will highlight the mode of transfer of loads, and will expose the induced deformations by also allowing to verification criteria of bearing capacity and allowable settlement according to geometric information of the model. The columns on a substrate located at 9 m have a length of 9 m and a diameter of 40 cm and were obtained by incorporating ballast of granular class 0/31.5 of internal friction angle of 38˚ and a density weight of 21 kN/m3. The choice of this method is based on the geotechnical characteristics of the initial soil. Thus, identification and characterization tests were carried out to estimate the bearing capacity and the settlement giving respectively 125 kPa and 57 cm. These results show the ground does not have sufficient mechanical properties to withstand the loads transmitted by the tank. By adopting the reinforcement of the soil with ballasted columns, numerical calculations show that after applying a load equal to 265.1 KPa, 20 cm vertical settlement and 17 cm horizontal displacement were obtained. This is in the tolerable deformation range for our tank, namely, less than 20 cm. Analytically, in addition to reducing settlement, ballasted columns, Due to their high stiffness, they have effectively contributed to the increase of the permissible soil stress up to 257 kPa. 展开更多
关键词 reinforcEMENT Ballasted Columns Reservoir Geotechnical Modeling Plaxis 2D
下载PDF
Dynamic and electrical responses of a curved sandwich beam with glass reinforced laminate layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact
16
作者 N.SHAHVEISI S.FELI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期155-178,共24页
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate... The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed. 展开更多
关键词 analytical model piezoelectric layer curved sandwich beam glass reinforced laminate(GRL) pliable core low-velocity impact(LVI) classical non-adhesive elastic contact theory
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
17
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins reinforced Sugar Cane Molasses Building Insulation Mechanical and Thermal Properties
下载PDF
Exploring the Synergy: Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-Sand
18
作者 Vijayalakshmi Ravichandran Ravichandran Ramanujam Srinivasan +1 位作者 Saravanan Jagadeesan Prithiviraj Chidambaram 《Open Journal of Civil Engineering》 2024年第3期334-347,共14页
Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objective... Introduction: This study investigates the Experimental and Theoretical Investigation of Steel and Glass Fiber Reinforced Polymer (GFRP) Reinforced Slab Incorporating Alccofine and M-sand. Objective: Specific objectives include evaluating the mechanical properties and structural behaviour of steel and GFRP-reinforced one-way slabs and comparing experimental and theoretical predictions. Methods: Four different mix proportions were arrived at, comprising both conventional concrete and Alccofine-based concrete. In each formulation, a combination of normal river sand and M-sand was utilized. Results: Concrete with Alccofine exhibits superior mechanical properties, while M-sand incorporation minimally affects strength but reduces reliance on natural sand. GFRP-reinforced slabs display distinct brittle behaviour with significant deflections post-cracking, contrasting steel-reinforced slabs’ gradual, ductile failure. Discrepancies between experimental data and design recommendations underscore the need for guideline refinement. Conclusion: Alccofine and M-sand enhance concrete properties, but reinforcement type significantly influences slab behaviour. GFRP-reinforced slabs, though exhibiting lower values than steel, offer advantages in harsh environments, warranting further optimization. 展开更多
关键词 Fiber reinforced Polymer Alccofine Concrete Structural Behaviour Mechanical Properties One-Way Slab Sustainable Construction Materials Alternative Aggregates
下载PDF
Strategies for Teaching the Reinforced Concrete Structures Course in Engineering Majors
19
作者 Huina Li 《Journal of World Architecture》 2024年第3期93-98,共6页
The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career ... The cultivation of engineering capabilities aims to equip engineering professionals with high-level expertise to meet the demands of society and industry development,thereby enhancing their competitiveness and career potential.This article focuses on engineering capability development,exploring teaching strategies for the Reinforced Concrete Structure course.It aims to provide insights for educators in engineering programs at universities and vocational colleges in China.By doing so,teaching plans that meet the needs of engineering capability development,laying a solid educational foundation for the healthy growth of engineering professionals in the new era,and enhancing their application of knowledge and skills can be developed. 展开更多
关键词 Engineering ability reinforced Concrete Structure course Classroom practice Expert exchange
下载PDF
Analysis and Prediction Model Reinforced UHPC Shrinkage Property
20
作者 Shuwen Deng Zhiming Huang +1 位作者 Hao Chen Jia Hu 《Journal of Architectural Research and Development》 2024年第2期99-107,共9页
This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the m... This paper explores the shrinkage of reinforced UHPC under high-temperature steam curing and natural curing conditions.The results are compared with the existing shrinkage prediction models.The results show that the maximum shrinkage strain of reinforced UHPC after steam curing is 164μεand gradually becomes zero.As for natural curing,the maximum shrinkage strain is 173μεand the value stabilizes on the 10th day after pouring.This indicated that steam curing can significantly reduce shrinkage time.Compared with the plain UHPC tested in the previous literature,the structural reinforcement can significantly inhibit the UHPC shrinkage and greatly reduce the risk of cracking due to shrinkage.By comparing the results in this paper with the existing models for predicting the shrinkage strain development,it is found that the formula recommended in the French UHPC structural and technical specification is suitable for the shrinkage curve in the present paper. 展开更多
关键词 Ultra-high performance concrete(UHPC) UHPC shrinkage reinforced UHPC slab Shrinkage prediction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部