The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in th...The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.展开更多
To investigate the physical and chemical properties of the steelmaking dust, wet sieve separation, XRD, SEM, EDS, and traditional chemical analysis were carded out to obtain the particle size distribution, mineralogy,...To investigate the physical and chemical properties of the steelmaking dust, wet sieve separation, XRD, SEM, EDS, and traditional chemical analysis were carded out to obtain the particle size distribution, mineralogy, morphology, and the chemical composition of the dust. The dust with a total Fe content of 64.08wt% has coarse metallic iron, magnetite and hematite grains, while free clay minerals with a size of 〈38 μm are mainly iosidefite, calcium silicate, and calcite, which are conglomerated to each other. By following the procedures of wet magnetic separation, acid leaching, and oxidization calcination, magnetic materials were recycled and further prepared as iron oxide red with a productivity of 0.54 ton per unit ton of the dust. Middle iron concentrate with an Fe content of 65.92wt% can be reused as feeding material in the ironmaking industry. Additionally, washed water from acid leaching with an Fe^3+ ion content of less than 5 g·L^-1 was recovered as feeding water in the wet magnetic separation procedure. 2008 University of Science and Technology Beijing. All fights reserved.展开更多
A new direct recycling technology was developed to recover the valuable metals present in the stainless steelmaking dust and protect the environment. The agglomeration behavior of the dust was analyzed to ensure the r...A new direct recycling technology was developed to recover the valuable metals present in the stainless steelmaking dust and protect the environment. The agglomeration behavior of the dust was analyzed to ensure the requirements of the direct recycling. The main characteristics such as strength, leachability, structure and chemical composition of the pellets were investigated. SEM images show a significant amount of porosities affecting the strength of the pellets and the arrangement of particles in the pellets reveals that no recrystallization bonds are formed, resulting in the poor strength of the pellets. When lignosulfonate is applied as the binder for the agglomeration and the green pellets are dried at room temperature for 60 h, the strong pellets can be obtained without milling the dust. The result of leachability tests shows that the pellets agglomerated can not satisfy the regulations set by the environmental protection agency of US. And it will cause some environmental problems in the long storage of pellets.展开更多
基金Project(50274073) supported by the National Natural Science Foundation of China project(Metallurgy 2003, CRDPJ 210038) supported by Natural Sciences and Engineering Research Council of Canada
文摘The heating and melting mechanisms of the pellets immersed in liquid slag were investigated, and the effect of the pellet heating and the melting conditions were studied. The results show that the dust component in the pellet is melted from the surface and no metallic elements are melted before the dust component, the time for the pellet completely melted is reduced as the iron powder content increases since the metallic iron has high thermal conductivity. These are four stages of heating and melting of pellet in liquid slag, they are the growth and melt of solid slag shell, penetration of liquid slag, dissolving of dust component and melting of reduced metals. The lifetime of the solid slag shell is in the range of 7-16 s and increasing the pre-heating temperature of the pellet and the slag temperature can shorten the slag shell lifetime. The time for the dust component in the pellet to be melted completely is in the range of 20-45 s and increasing the pre-heating temperature, especially in the range of 600-800 ℃, can obviously reduce the melting time. A higher slag temperature can also improve the pellet melting and the melting time is reduced by 10-15 s when the slag temperature is increased from 1 450 to 1 550 ℃. The pellet with higher content of iron powder is beneficial to the melting by improving the heat conductivity.
文摘To investigate the physical and chemical properties of the steelmaking dust, wet sieve separation, XRD, SEM, EDS, and traditional chemical analysis were carded out to obtain the particle size distribution, mineralogy, morphology, and the chemical composition of the dust. The dust with a total Fe content of 64.08wt% has coarse metallic iron, magnetite and hematite grains, while free clay minerals with a size of 〈38 μm are mainly iosidefite, calcium silicate, and calcite, which are conglomerated to each other. By following the procedures of wet magnetic separation, acid leaching, and oxidization calcination, magnetic materials were recycled and further prepared as iron oxide red with a productivity of 0.54 ton per unit ton of the dust. Middle iron concentrate with an Fe content of 65.92wt% can be reused as feeding material in the ironmaking industry. Additionally, washed water from acid leaching with an Fe^3+ ion content of less than 5 g·L^-1 was recovered as feeding water in the wet magnetic separation procedure. 2008 University of Science and Technology Beijing. All fights reserved.
文摘A new direct recycling technology was developed to recover the valuable metals present in the stainless steelmaking dust and protect the environment. The agglomeration behavior of the dust was analyzed to ensure the requirements of the direct recycling. The main characteristics such as strength, leachability, structure and chemical composition of the pellets were investigated. SEM images show a significant amount of porosities affecting the strength of the pellets and the arrangement of particles in the pellets reveals that no recrystallization bonds are formed, resulting in the poor strength of the pellets. When lignosulfonate is applied as the binder for the agglomeration and the green pellets are dried at room temperature for 60 h, the strong pellets can be obtained without milling the dust. The result of leachability tests shows that the pellets agglomerated can not satisfy the regulations set by the environmental protection agency of US. And it will cause some environmental problems in the long storage of pellets.