期刊文献+
共找到52,328篇文章
< 1 2 250 >
每页显示 20 50 100
Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model
1
作者 Julius M.Mayer Christian Krug +4 位作者 Maximilian M.Saller Annette Feuchtinger Riccardo E.Giunta Elias Volkmer Thomas Holzbach 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期652-656,共5页
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati... Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice. 展开更多
关键词 adipose-derived progenitor cells adipose-derived multipotent stem/progenitor cell autologous nerve graft fibrin conduit hypoxia hypoxic pre-conditioning nerve defect nerve tissue engineering peripheral nerve regeneration regenerative medicine
下载PDF
Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders
2
作者 Nai-Yu Ke Tian-Yi Zhao +2 位作者 Wan-Rong Wang Yu-Tong Qian Chao Liu 《World Journal of Stem Cells》 SCIE 2023年第4期235-247,共13页
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re... Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications. 展开更多
关键词 Neural stem/progenitor cell BRG1/BRM-associated factor complex SUBUNIT Proliferation DIFFERENTIATION Neural developmental disorde
下载PDF
Tissue-specific cancer stem/progenitor cells:Therapeutic implications
3
作者 Amani Yehya Joe Youssef +2 位作者 Sana Hachem Jana Ismael Wassim Abou-Kheir 《World Journal of Stem Cells》 SCIE 2023年第5期323-341,共19页
Surgical resection,chemotherapy,and radiation are the standard therapeutic modalities for treating cancer.These approaches are intended to target the more mature and rapidly dividing cancer cells.However,they spare th... Surgical resection,chemotherapy,and radiation are the standard therapeutic modalities for treating cancer.These approaches are intended to target the more mature and rapidly dividing cancer cells.However,they spare the relatively quiescent and intrinsically resistant cancer stem cells(CSCs)subpopulation residing within the tumor tissue.Thus,a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs'resistant features.Based on their unique expression profile,the identification,isolation,and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence.Yet,targeting CSCs is limited mainly by the irrelevance of the utilized cancer models.A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids(PDOs)as a tool for establishing pre-clinical tumor models.Herein,we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors.Additionally,we highlight the advantage and relevance of the threedimensional PDOs culture model as a platform for modeling cancer,evaluating the efficacy of CSC-based therapeutics,and predicting drug response in cancer patients. 展开更多
关键词 Cancer stem cells Therapy resistance Tissue-specific cancer stem cell markers Patient-derived organoids Pre-clinical cancer models
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
4
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone 被引量:2
5
作者 Giancarlo Poiana Roberta Gioia +3 位作者 Serena Sineri Silvia Cardarelli Giuseppe Lupo Emanuele Cacci 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第10期1773-1783,共11页
In rodents,well characterized neurogenic niches of the adult brain,such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus,support the maintenance of neural/stem progenito... In rodents,well characterized neurogenic niches of the adult brain,such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus,support the maintenance of neural/stem progenitor cells(NSPCs)and the production of new neurons throughout the lifespan.The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation.At the same time,it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli.A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging,injury or disease.At the core of the molecular mechanisms regulating neurogenesis,several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues.Here,we focus on REST,Egr1 and Dbx2 and their roles in adult neurogenesis,especially in the subventricular zone.We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche.We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain.Finally,we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis. 展开更多
关键词 adult neurogenesis aging extracellular signaling gene regulation neural stem/progenitor cells transcription factors
下载PDF
Ultrastructure of human neural stem/progenitor cells and neurospheres 被引量:1
6
作者 Yaodong Zhao Tianyi Zhang +4 位作者 Qiang Huang Aidong Wang Jun Dong Qing Lan Zhenghong Qin 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第5期365-370,共6页
BACKGROUND: Biological and morphological characteristics of neural stem/progenitor cells (NSPCs) have been widely investigated. OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospher... BACKGROUND: Biological and morphological characteristics of neural stem/progenitor cells (NSPCs) have been widely investigated. OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy. DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008. MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi Instruments, Japan; transmission electron microscope was provided by JEOL, Japan. METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination. MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres. RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells. CONCLUSION: A large number of autophagosomes were observed in NSPCs and gap junctions were visible between adjacent NSPCs. 展开更多
关键词 Neural stem/progenitor cells NEUROSPHERE ULTRASTRUCTURE AUTOPHAGOSOME cell junction
下载PDF
Distribution and localization of fibroblast growth factor-8 in rat brain and nerve cells during neural stem/progenitor cell differentiation 被引量:4
7
作者 Jiang Lu Dongsheng Li Kehuan Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第19期1455-1462,共8页
The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differen... The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor, fibroblast growth factor receptor-3, in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro. Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo. Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence. Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro. Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain, namely the substantia nigra, compact part, dorsal tier, substantia nigra and reticular part, but was not detected in the forebrain comprising the caudate putamen and striatum. Unusual results were obtained in retrosplenial locations of adult rat brain. We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses. We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8, a secretory factor. Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells. In contrast, addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons. Our study may help delineate the important roles of fibroblast growth factor-8 in brain activities and neural stem/progenitor cell differentiation. 展开更多
关键词 fibroblast growth factor-8 fibroblast growth factor receptor-3 neural stem/progenitor celldifferentiation dopaminergic neurons MIDBRAIN neural regeneration
下载PDF
PRELIMINARY STUDY OF RETROVIRAL MEDIATED TRANSFER OF THE HUMAN mdr-1 GENE INTO MURINE AND HUMAN HEMATOPOIETIC STEM/PROGENITOR CELLS 被引量:1
8
作者 冯凯 裴雪涛 +5 位作者 王立生 高文谦 徐黎 王玉芝 李梁 吴祖泽 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1997年第4期36-39,共4页
To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruse... To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruses by transfecting the retroviral vector PHaMDR1/A into packging cell line PA317 by Lipofectin. The virus titer of the supernatants was 1.2×105 cfu/ml. We transfected the murine hematopietic cells collected from 5FU pretreated mice and they showed the ability to reconstitute the longterm hematopoiesis of preirradiated mice. After 4 months, both of bone marrow cells and peripheral blood cells of transplanted mice still contained mdr1 gene. We also transfered mdr1 gene into human bone marrow CD34+ cells selected by using magnetic cell sorting system. PCR analysis showed that transduced CD34+ cells maintained the mdr1 cDNA. A fraction of CFUGM originated from transfected CD34+ cells had the charactor of resistance to Taxol. It is indicated that mdr1 gene can be transduced into murine and human stem/proginitor cells through retroviral mediated gene transfer and it protects the transfected cells from cytotoxic drugs. 展开更多
关键词 stem/progenitor cells mdr1 gene Gene transfer Retroviral mediated
下载PDF
Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19 被引量:1
9
作者 Aleksandra Klimczak 《World Journal of Stem Cells》 SCIE CAS 2020年第9期1013-1022,共10页
The new coronavirus,severe acute respiratory syndrome coronavirus-2(SARSCoV-2),which emerged in December 2019 in Wuhan,China,has reached worldwide pandemic proportions,causing coronavirus disease 2019(COVID-19).The cl... The new coronavirus,severe acute respiratory syndrome coronavirus-2(SARSCoV-2),which emerged in December 2019 in Wuhan,China,has reached worldwide pandemic proportions,causing coronavirus disease 2019(COVID-19).The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia.The lungs are the primary organ affected by SARS-CoV-2,with a very slow turnover for renewal.SARS-CoV-2 enters the lungs via angiotensinconverting enzyme 2 receptors and induces an immune response with the accumulation of immunocompetent cells,causing a cytokine storm,which leads to target organ injury and subsequent dysfunction.To date,there is no effective antiviral therapy for COVID-19 patients,and therapeutic strategies are based on experience treating previously recognized coronaviruses.In search of new treatment modalities of COVID-19,cell-based therapy with mesenchymal stem cells(MSCs)and/or their secretome,such as soluble bioactive factors and extracellular vesicles,is considered supportive therapy for critically ill patients.Multipotent MSCs are able to differentiate into different types of cells of mesenchymal origin,including alveolar epithelial cells,lung epithelial cells,and vascular endothelial cells,which are severely damaged in the course of COVID-19 disease.Moreover,MSCs secrete a variety of bioactive factors that can be applied for respiratory tract regeneration in COVID-19 patients thanks to their trophic,anti-inflammatory,immunomodulatory,anti-apoptotic,pro-regenerative,and proangiogenic properties. 展开更多
关键词 Mesenchymal stem cells stem/progenitor cells Lung damage Mesenchymal stem cell secretome COVID-19 disease COVID-19 pneumonia
下载PDF
Regulation of neural stem/progenitor cell functions by P2X and P2Y receptors
10
作者 Peter Illes Patrizia Rubini 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期395-396,共2页
Neural stem/progenitor cells:Radial glial cells constitute multipotent cells in the ventricular zone,lining the wall of the lateral ventricle of the embryonic brain.They have the capacity to give rise to cells belong... Neural stem/progenitor cells:Radial glial cells constitute multipotent cells in the ventricular zone,lining the wall of the lateral ventricle of the embryonic brain.They have the capacity to give rise to cells belonging to all three major linages(neurons,astrocytes and oligodendrocytes)of the nervous system(Tang and Illes,2017). 展开更多
关键词 NSCs cell Regulation of neural stem/progenitor cell functions by P2X and P2Y receptors stem
下载PDF
Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy
11
作者 Liu Shi Pan-Pan Lu +2 位作者 Guang-Chun Dai Ying-Juan Li Yun-Feng Rui 《World Journal of Stem Cells》 SCIE 2021年第9期1338-1348,共11页
Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have r... Tendinopathy is a challenging complication observed in patients with diabetes mellitus.Tendinopathy usually leads to chronic pain,limited joint motion,and even ruptured tendons.Imaging and histological analyses have revealed pathological changes in various tendons of patients with diabetes,including disorganized arrangement of collagen fibers,microtears,calcium nodules,and advanced glycation end product(AGE)deposition.Tendon-derived stem/progenitor cells(TSPCs)were found to maintain hemostasis and to participate in the reversal of tendinopathy.We also discovered the aberrant osteochondrogenesis of TSPCs in vitro.However,the relationship between AGEs and TSPCs in diabetic tendinopathy and the underlying mechanism remain unclear.In this review,we summarize the current findings in this field and hypothesize that AGEs could alter the properties of tendons in patients with diabetes by regulating the proliferation and differentiation of TSPCs in vivo. 展开更多
关键词 TENDINOPATHY Diabetes mellitus Tendon stem/progenitor cells Advanced glycation end products
下载PDF
Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues 被引量:10
12
作者 Urszula Kozlowska Agnieszka Krawczenko +4 位作者 Katarzyna Futoma Tomasz Jurek Marta Rorat Dariusz Patrzalek Aleksandra Klimczak 《World Journal of Stem Cells》 SCIE CAS 2019年第6期347-374,共28页
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characte... BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application. AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SMMSCs), and skin (SK-MSCs). METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc;27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed. RESULTS All MSCs showed the basic MSC phenotype;however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties;however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs. CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine. 展开更多
关键词 MESENCHYMAL stem/progenitor cells Bone marrow MSCS ADIPOSE tissue MSCS Muscle-derived MSCS Skin-derived MSCS Cytokines and TROPHIC factors of MSCS Spontaneous fusion of MSCS
下载PDF
Propofol and remifentanil at moderate and high concentrations affect proliferation and differentiation of neural stem/progenitor cells 被引量:7
13
作者 Qing Li Jiang Lu Xianyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期2002-2007,共6页
Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, wheth... Propofol and remifentanil alter intracellular Ca^2+ concentration ([Ca^2+]i) in neural stem/progen-itor cells by activating γ-aminobutyric acid type A receptors and by reducing testosterone levels. However, whether this process affects neural stem/progenitor cell proliferation and differenti-ation remains unknown. In the present study, we applied propofol and remifentanil, alone or in combination, at low, moderate or high concentrations (1, 2–2.5 and 4–5 times the clinically effective blood drug concentration), to neural stem/progenitor cells from the hippocampi of newborn rat pups. Low concentrations of propofol, remifentanil or both had no noticeable effect on cell proliferation or differentiation; however, moderate and high concentrations of propofol and/or remifentanil markedly suppressed neural stem/progenitor cell proliferation and differen-tiation, and induced a decrease in [Ca^2+]i during the initial stage of neural stem/progenitor cell differentiation. We therefore propose that propofol and remifentanil interfere with the prolifer-ation and differentiation of neural stem/progenitor cells by altering [Ca^2+]i. Our ifndings suggest that propofol and/or remifentanil should be used with caution in pediatric anesthesia. 展开更多
关键词 nerve regeneration PROPOFOL REMIFENTANIL neural stem cells neural progenitor cells PROLIFERATION apoptosis DIFFERENTIATION [Ca^2+]i neural regeneration
下载PDF
Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro 被引量:4
14
作者 Jiang Lu Kehuan Lu Dongsheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第22期1688-1694,共7页
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differ... In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. 展开更多
关键词 neural stem cells neural progenitor cells fibroblast growth factor 8 Sonic Hedgehog signalpathway SECRETION dynamic DIFFERENTIATION NEURONS neural regeneration
下载PDF
Stages based molecular mechanisms for generating cholangiocytes from liver stem/progenitor cells 被引量:3
15
作者 Wei-Hui Liu Li-Na Ren +2 位作者 Tao Chen Li-Ye Liu Li-Jun Tang 《World Journal of Gastroenterology》 SCIE CAS 2013年第41期7032-7041,共10页
Except for the most organized mature hepatocytes,liver stem/progenitor cells(LSPCs)can differentiate into many other types of cells in the liver including cholangiocytes.In addition,LSPCs are demonstrated to be able t... Except for the most organized mature hepatocytes,liver stem/progenitor cells(LSPCs)can differentiate into many other types of cells in the liver including cholangiocytes.In addition,LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells.Even more,under some bad conditions,these LSPCs could generate liver cancer stem like cells(LCSCs)through malignant transformation.In this review,we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs,especially differentiation of cholangiocytes,insulin-producing cells and LCSCs.First of all,to certificate the cell fates of LSPCs,the following three features need to be taken into account to perform accurate phenotyping:(1)morphological properties;(2)specific markers;and(3)functional assessment including in vivo transplantation.Secondly,to promote LSPCs differentiation,systematical attention should be paid to inductive materials(such as growth factors and chemical stimulators),progressive materials including intracellular and extracellular signaling pathways,and implementary materials(such as liver enriched transcriptive factors).Accordingly,some recommendations were proposed to standardize,optimize,and enrich the effective production of cholangiocyte-like cells out of LSPCs.At the end,the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed.The differentiation of LSPCs is a gradually progressing process,which consists of three main steps:initiation,progression and accomplishment.It’s the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs. 展开更多
关键词 LIVER stem/progenitor cells CHOLANGIOCYTES BILIARY DIFFERENTIATION Unbalanced distribution of materials cell therapy
下载PDF
Yiguanjian decoction enhances fetal liver stem/progenitor cell-mediated repair of liver cirrhosis through regulation of macrophage activation state 被引量:11
16
作者 Ying Xu Wei-Wei Fan +7 位作者 Wen Xu Shi-Li Jiang Gao-Feng Chen Cheng Liu Jia-Mei Chen Hua Zhang Ping Liu Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2018年第42期4759-4772,共14页
AIM To investigate whether Yiguanjian decoction(YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation.METHODS A rat model of liver cirrhosis was established via subcutaneou... AIM To investigate whether Yiguanjian decoction(YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation.METHODS A rat model of liver cirrhosis was established via subcutaneous injection of carbon tetrachloride(CCl4) for8 wk. From the beginning of the ninth week, the rats received 2-acetylaminofluorene(2-AAF) by oral gavage and a DLK-1+ fetal liver stem/progenitor cell(FLSPC)transplant or an FLSPC transplant in combination with YGJ treatment for 4 wk. In vitro, lipopolysaccharide(LPS)-activated macrophages were co-cultured with WB-F344 cells, and the differentiation of WB-F344 cells was observed in the presence and absence of YGJ treatment.RESULTS FLSPC transplantation improved liver function and histopathology, and inhibited the activation of the noncanonical Wnt signaling pathway, while activating the canonical Wnt signaling pathway. YGJ enhanced the therapeutic effects of FLSPCs and also promoted the liver regeneration differentiation of FLSPCs into hepatocytes.In vitro, LPS-activated macrophages promoted the differentiation of WB-F344 cells into myofibroblasts, and the canonical Wnt signaling was inhibited while the noncanonical Wnt signaling was activated in WB-F344 cells.YGJ suppressed the activation of macrophages and then inhibited non-canonical Wnt signaling and promoted canonical Wnt signaling.CONCLUSION YGJ enhances FLSPC-mediated repair of liver cirrhosis through regulation of macrophage activation state, and YGJ in combination with stem cell transplantation may be a suitable treatment for end-stage liver cirrhosis. 展开更多
关键词 CIRRHOSIS Hepatic progenitor cells Wnt signaling pathway MACROPHAGE 2-acetylaminofluorene Carbon TETRACHLORIDE Yiguanjian DECOCTION
下载PDF
Urine-derived stem/progenitor cells:A focus on their characterization and potential 被引量:7
17
作者 Perrine Burdeyron Sébastien Giraud +1 位作者 Thierry Hauet Clara Steichen 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1080-1096,共17页
Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult... Cell therapy,i.e.,the use of cells to repair an affected tissue or organ,is at the forefront of regenerative and personalized medicine.Among the multiple cell types that have been used for this purpose[including adult stem cells such as mesenchymal stem cells or pluripotent stem cells],urine-derived stem cells(USCs)have aroused interest in the past years.USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation.Importantly,they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure,which is broadly applicable,whereas most adult stem cell types require invasive procedure.Moreover,USCs can be differentiated into renal cell types.This is of high interest for renal cell therapy-based regenerative approaches.This review will firstly describe the isolation and characterization of USCs.We will specifically present USC phenotype,which is not an object of consensus in the literature,as well as detail their differentiation capacity.In the second part of this review,we will present and discuss the main applications of USCs.These include use as a substrate to generate human induced pluripotent stem cells,but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system.Importantly,we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes,which is a strategy being increasingly employed.In the last section,we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine. 展开更多
关键词 Urine-derived stem cells Urine progenitor cells EXOSOMES cell therapy Kidney injury and repair Regenerative medicine
下载PDF
Stem/progenitor cells and obstructive sleep apnea syndrome - new insights for clinical applications 被引量:1
18
作者 Miruna Mihaela Micheu Ana-Maria Rosca Oana-Claudia Deleanu 《World Journal of Stem Cells》 SCIE CAS 2016年第10期332-341,共10页
Obstructive sleep apnea syndrome(OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrenc... Obstructive sleep apnea syndrome(OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrence of frequent and regular hypoxic events, patients with OSAS are at increased risk of cardiovascular disease, stroke, metabolic disorders, occupational errors, motor vehicle accidents and even death. Thus, OSAS has severe consequences and represents a significant economic burden. However, some of the consequences, as well as their costs can be reduced with appropriate detection and treatment. In this context, the recent advances that were made in stem cell biology knowledge and stem cell- based technologies hold a great promise for various medical conditions, including respiratory diseases. However, the investigation of the role of stem cells in OSAS is still recent and rather limited, requiring further studies, both in animal models and humans. The goal of this review is to summarize the current state of knowledge regarding both lung resident as well as circulating stem/progenitor cells and discuss existing controversies in the field in order to identify future research directions for clinical applications in OSAS. Also, the paper highlights the requisite for inter-institutional, multi-disciplinary research collaborations in order to achieve breakthrough results in the field. 展开更多
关键词 Obstructive sleep APNEA syndrome Continuous positive airway pressure therapy LUNG RESIDENT stem/progenitor cellS Circulating stem/progenitor cellS LUNG homeostasis
下载PDF
Why Mesenchymal Stem/Progenitor Cell Heterogeneity in Specific Environments? <br/>—Implications for Tissue Engineering Applications Following Injury or Degeneration of Connective Tissues 被引量:3
19
作者 David A. Hart 《Journal of Biomedical Science and Engineering》 2014年第8期526-532,共7页
Mesenchymal stem/progenitor cells (MSC/MPC) from a variety of tissue sources (bone marrow, adipose tissue, fat pads, synovial membranes, synovial fluid, skin, muscle and periosteal tissue) have been widely applied for... Mesenchymal stem/progenitor cells (MSC/MPC) from a variety of tissue sources (bone marrow, adipose tissue, fat pads, synovial membranes, synovial fluid, skin, muscle and periosteal tissue) have been widely applied for tissue engineering applications to generate replacements for injured or degenerated tissues. Alternatively, they have also been injected as free cells in an attempt to facilitate in vivo repair. Nearly all studies reported have used mixed cell populations of MSC/MPC, usually defined by cell surface phenotypes and/or functional ability to differentiate towards multiple cell lineages. Using more detailed cell surface phenotyping and limiting dilution approaches to isolate individual MSC/MPC clones have indicated that such mixed cell populations are very heterogeneous. In addition subsets of cells from different sources may have epigenetic modifications. While it is clear that MSC/MPC cells exhibit heterogeneity, the question of why this is the case has not been well addressed. This review will address some of these issues, as well as provide some insights into the implications when using such diverse cells for tissue engineering applications. 展开更多
关键词 MESENCHYMAL stem/progenitor cells cell HETEROGENEITY TISSUE-SPECIFIC HETEROGENEITY Tissue Engineering
下载PDF
Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy 被引量:1
20
作者 Wen-Zhuo Zhuang Lin-Mei Long Wen-Jun Ji Zhong-Qin Liang 《Chinese Journal of Cancer》 SCIE CAS CSCD 北大核心 2011年第10期712-720,共9页
Glioma stem/progenitor cells(GSPCs) are considered to be responsible for the initiation,propagation,and recurrence of gliomas.The factors determining their differentiation remain poorly defined.Accumulating evidences ... Glioma stem/progenitor cells(GSPCs) are considered to be responsible for the initiation,propagation,and recurrence of gliomas.The factors determining their differentiation remain poorly defined.Accumulating evidences indicate that alterations in autophagy may influence cell fate during mammalian development and differentiation.Here,we investigated the role of autophagy in GSPC differentiation.SU-2 cells were treated with rapamycin,3-methyladenine(3-MA) plus rapamycin,E64d plus rapamycin,or untreated as control.SU-2 cell xenografts in nude mice were treated with rapamycin or 3-MA plus rapamycin,or untreated as control.Western blotting and immunocytochemistry showed up-regulation of microtubule-associated protein light chain-3(LC3)-II in rapamycin-treated cells.The neurosphere formation rate and the number of cells in each neurosphere were significantly lower in the rapamycin treatment group than in other groups.Real-time PCR and immunocytochemistry showed down-regulation of stem/progenitor cell markers and up-regulation of differentiation markers in rapamycin-treated cells.Transmission electron microscopy revealed autophagy activation in rapamycin-treated tumor cells in mice.Immunohistochemistry revealed decreased Nestin-positive cells and increased GFAP-positive cells in rapamycin-treated tumor sections.These results indicate that rapamycin induces differentiation of GSPCs by activating autophagy. 展开更多
关键词 雷帕霉素 分化细胞 脑胶质瘤 祖细胞 自噬 激活 诱导 WESTERN印迹
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部