A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precisio...A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme.展开更多
The paper describes a new method of the stepping motor moimun time optimal control with closed-loop control. A mathematical model and optimal control strategy for the optimal control of stepping motor are proposed. ...The paper describes a new method of the stepping motor moimun time optimal control with closed-loop control. A mathematical model and optimal control strategy for the optimal control of stepping motor are proposed. Realizing technology for accelerating展开更多
We present the development of a novel prosthetic hand based on the underactuated mechanism. The aim is focused on increasing its dexterity while keeping the same dimension and weight of a traditional prosthetic device...We present the development of a novel prosthetic hand based on the underactuated mechanism. The aim is focused on increasing its dexterity while keeping the same dimension and weight of a traditional prosthetic device. The hybrid step motor is used as the actuator, which enables the finger to keep enough high contact torque on the grasped object with less energy consumption provided by the holding torque. The grasping force of the finger is estimated from the base joint torque, and the adoption of impedance control has provided compliance in the grasping. Also a parallel observer is used to switch over between the impedance control and the torque holding mode. The experimental results show the effectiveness of the design and control strategy.展开更多
An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produced by the ...An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produced by the process of position signals. At the same time, a DSP (Data Signal Processor) unit is used to realize the speed and current closed-loops of the hybrid stepping motor system. At last, experimental results show the control system has excellent static and dynamic characteristics.展开更多
The high controllability and high resolution control of linear ultrasonic motors depend on effective control of driving signals.For a good control characteristic,step control which the driver output turned off and on ...The high controllability and high resolution control of linear ultrasonic motors depend on effective control of driving signals.For a good control characteristic,step control which the driver output turned off and on was used.Therefore,a novel dual PWM topology structure ultrasonic motor driver was designed and analyzed.According to the characteristics of the circuits,two kinds of hardware turned off methods named methods A and B were discussed.The differences of the voltage applied on motor by different methods were figured out.Finally,a series of experiments were carried out in the clean room to study the influence of step characteristic by different turn off methods.The experimental results show that the steplength was 230 nm by method A and 125 nm by method B,while cycles of driving signals were 6.The method B has a smaller steplength when cycles are 6.The average steplength varies in non-linear while driving cycles changing.The steplength varies approximately in linear while voltage amplitude changing.Therefore,method B is better to implement step control,because it gets a better control in positioning system.展开更多
Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When...Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.展开更多
文摘A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme.
文摘The paper describes a new method of the stepping motor moimun time optimal control with closed-loop control. A mathematical model and optimal control strategy for the optimal control of stepping motor are proposed. Realizing technology for accelerating
基金Supported by t he National Natural Science Foundation of China ( No. 50435040) and the High Technology Research and Development Programme of China( No. 2003AA420010).
文摘We present the development of a novel prosthetic hand based on the underactuated mechanism. The aim is focused on increasing its dexterity while keeping the same dimension and weight of a traditional prosthetic device. The hybrid step motor is used as the actuator, which enables the finger to keep enough high contact torque on the grasped object with less energy consumption provided by the holding torque. The grasping force of the finger is estimated from the base joint torque, and the adoption of impedance control has provided compliance in the grasping. Also a parallel observer is used to switch over between the impedance control and the torque holding mode. The experimental results show the effectiveness of the design and control strategy.
文摘An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produced by the process of position signals. At the same time, a DSP (Data Signal Processor) unit is used to realize the speed and current closed-loops of the hybrid stepping motor system. At last, experimental results show the control system has excellent static and dynamic characteristics.
基金supported by the National Science Foundation of China(No.51275235)
文摘The high controllability and high resolution control of linear ultrasonic motors depend on effective control of driving signals.For a good control characteristic,step control which the driver output turned off and on was used.Therefore,a novel dual PWM topology structure ultrasonic motor driver was designed and analyzed.According to the characteristics of the circuits,two kinds of hardware turned off methods named methods A and B were discussed.The differences of the voltage applied on motor by different methods were figured out.Finally,a series of experiments were carried out in the clean room to study the influence of step characteristic by different turn off methods.The experimental results show that the steplength was 230 nm by method A and 125 nm by method B,while cycles of driving signals were 6.The method B has a smaller steplength when cycles are 6.The average steplength varies in non-linear while driving cycles changing.The steplength varies approximately in linear while voltage amplitude changing.Therefore,method B is better to implement step control,because it gets a better control in positioning system.
基金The authors acknowledge the financial support from the National Basic Research Program of China(973 Program)(Grant No.2015CB057503).
文摘Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.