The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw...The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.展开更多
A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precisio...A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme.展开更多
The existing resonant linear piezoelectric motors must operate with high working voltage in resonant condition,resulting in their narrow operating frequency range and poor running stability.Here,with the large displac...The existing resonant linear piezoelectric motors must operate with high working voltage in resonant condition,resulting in their narrow operating frequency range and poor running stability.Here,with the large displacement output characteristics of piezoelectric stacks,the trajectory at the drive foot of stator is firstly produced with two space quadrature piezoelectric actuators excited by sawtooth wave and square wave.Secondly,the friction drive principle of motor is used to analyze the working mechanisms of the continuous stepping motion.Finally,the motor prototype is designed and experiments are carried out.The experimental result shows that the motor can stably operate within the scope of 350 Hz to 750 Hz.When the excitation voltage is 30 Vand pre-load is 3Nor10 N,the lateral amplitude of the drive foot is approximately 4μm and the stable average interval ranges from3.1μm to 3.2μm with the error rate of 5%—7.5%.展开更多
We present the development of a novel prosthetic hand based on the underactuated mechanism. The aim is focused on increasing its dexterity while keeping the same dimension and weight of a traditional prosthetic device...We present the development of a novel prosthetic hand based on the underactuated mechanism. The aim is focused on increasing its dexterity while keeping the same dimension and weight of a traditional prosthetic device. The hybrid step motor is used as the actuator, which enables the finger to keep enough high contact torque on the grasped object with less energy consumption provided by the holding torque. The grasping force of the finger is estimated from the base joint torque, and the adoption of impedance control has provided compliance in the grasping. Also a parallel observer is used to switch over between the impedance control and the torque holding mode. The experimental results show the effectiveness of the design and control strategy.展开更多
An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produced by the ...An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produced by the process of position signals. At the same time, a DSP (Data Signal Processor) unit is used to realize the speed and current closed-loops of the hybrid stepping motor system. At last, experimental results show the control system has excellent static and dynamic characteristics.展开更多
Step motors, compared to other drive systems, are low-cost and easy to use devices. However, despite these undeniable advantages, they are characterized by some critical running conditions, due to the loss of synchron...Step motors, compared to other drive systems, are low-cost and easy to use devices. However, despite these undeniable advantages, they are characterized by some critical running conditions, due to the loss of synchronization between the stator's magnetic field and the rotor. In order to theoretically investigate such a behavior, several complex mathematical models have been developed, which require several parameters to be defined. For most step motors, such parameters cannot be easily drawn from their data-sheets; on the contrary, in this paper the authors refer to a simplified electro-mechanical model where the most of the parameters are known from data-sheets. The dependence between electrical and mechanical quantities can be investigated by an experimental point of view. At this aim, a specific novel test rig has been designed and developed for either static or dynamic characteristics measurement of small size step motors. In particular, the test rig allow to measure rotor's angular position, motor's torque, currents flowing in the motor's phases. The paper ends with the report of the results of several experimental tests, carried-out on a small-size motor in different running conditions, and with some preliminary remarks on the basis of the measures analysis.展开更多
To change the current phenomenon of "Being an armchair strategist" in the research of a stepping motor, the virtual simu- lation system of stepping motor was developed using virtual reality technique. The basic prin...To change the current phenomenon of "Being an armchair strategist" in the research of a stepping motor, the virtual simu- lation system of stepping motor was developed using virtual reality technique. The basic principle of stepping motor was expounded. The development strategy of the simulation software is introduced. Some key problems and their solutions, including coordinate transformation of rotor and order of on-off electricity for stator, were put forward in system development. Finally, there are three virtual simulation examples of the on-off electricity way in this paper. This work provides a valuable auxiliary tool for the study of the stepping motor.展开更多
A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, ...A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...展开更多
By imitating the behavioral characteristics of some typical animals, researchers develop bionic stepping motors to extend the working range of piezoelectric materials and utilize their high accuracy advantage as well....By imitating the behavioral characteristics of some typical animals, researchers develop bionic stepping motors to extend the working range of piezoelectric materials and utilize their high accuracy advantage as well. A comprehensive review of the bionic stepping motors driven by piezoelectric materials is presented in this work. The main parts of stepping piezoelectric motors, including the feeding module, clamping module, and other critical components, are introduced elaborately. We classify the bionic stepping piezoelectric motors into inchworm motors, seal motors, and inertia motors depending on their main structure modules, and present the mutual transformation relationships among the three types. In terms of the relative position relationships among the main structure modules, each of the inchworm motors, seal motors, and inertia motors can further be divided into walker type, pusher type, and hybrid type. The configurations and working principles of all bionic stepping piezoelectric motors are reported, followed by a discussion of the advantages and disadvantages of the performance for each type. This work provides theoretical support and thoughtful insights for the understanding, analysis, design, and application of the bionic stepping piezoelectric motors.展开更多
This paper proposes a new type of pulse launcher that applies the principle of linear motors. The stator, viz. gun barrel, of the launcher has a new structure of one segment of iron core consisting of 3 staggered lami...This paper proposes a new type of pulse launcher that applies the principle of linear motors. The stator, viz. gun barrel, of the launcher has a new structure of one segment of iron core consisting of 3 staggered laminations. This structure is helpful in advancing the thrust force per volume. Based on introducing the structure and the working principles, this paper resolves the electromagnetic thrusting force and performs mechanical analysis and experiments on the sample launcher. The research shows that this launcher is simple and brushless structure with brief controlling.展开更多
This paper introduces a design to improve the radiotherapy accuracy of gamma knife. In this design, sensor is used to collect respiratory parameters and tumor displacement (caused by human respiration) model is establ...This paper introduces a design to improve the radiotherapy accuracy of gamma knife. In this design, sensor is used to collect respiratory parameters and tumor displacement (caused by human respiration) model is established through optimization modeling. At the same time, data are transferred to single chip microcomputer (SCM) system by pressure sensor and then stepping motor is controlled by SCM. Finally, the intelligent positioning bed is under the control of stepping motor. As a result, the intelligent positioning bed can move reverse to respiratory law. The experimental results showed that this method can reduce the influence of respiration on tumor displacement, improving the accuracy of intelligent positioning bed with simple circuit and low cost at the same time.展开更多
In order to solve the quality problem of the boneless elastic steel strip which was used to scrape the rain on the glass ,the solutions for testing the steel strip's pressure was put forward. A special structure pres...In order to solve the quality problem of the boneless elastic steel strip which was used to scrape the rain on the glass ,the solutions for testing the steel strip's pressure was put forward. A special structure pressure sensor based on a solenoid was designed. A master-slave computer architecture of the personal computer and Atmega48 was also adopted which makes the design of the friendly user's interface become possible. The results from the user's application indicate that the pressure testing system achieved the expected effect.展开更多
An open looped ultrasonic stepping motor with self correction function was studied theoretically. In order to analyse the mechanism for the motor’s function, A linear ultrasonic self correcting stepping motor ...An open looped ultrasonic stepping motor with self correction function was studied theoretically. In order to analyse the mechanism for the motor’s function, A linear ultrasonic self correcting stepping motor is designed, and the dynamics of the motor was studied. For clarification, a set of experiment device was also designed, the calculated results were consistent with the experimental ones.展开更多
In order to investigate the feasibility regarding micro-satellite posture steering by laser micro-propulsion, a laser torsion pendulum has been set up so as to get first-hand basic physical and mechanical parameters o...In order to investigate the feasibility regarding micro-satellite posture steering by laser micro-propulsion, a laser torsion pendulum has been set up so as to get first-hand basic physical and mechanical parameters on laser micro-propulsion. The instrumentation consists of the optical, mechanical, and electrical sub-systems. The optical system includes the m,-fin beam optics, the measuring optics, and the observation optics. The mechanical system includes the gyration apparatus, transverse translation stage, vertical translator, focal lenses translator, calibration pendulum translator, and vacuum chamber. For the electrical system a computer is used to control stepping motors to drive the above moving apparatuses. With this instrument the calibration experiment and laser ablation experiment have been carried out. The experimental results demonstrate that the instrument has the capacity to measure impulse down to 10^-8 N.s with an error of about 10.4%, which can satisfy the requirement of micro-impulse lneasurelnent.展开更多
The disturbance torque generated via solar array drive assembly(SADA) can significantly degrade the key performance of satellite.The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-sta...The disturbance torque generated via solar array drive assembly(SADA) can significantly degrade the key performance of satellite.The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-stage straight gear reducer. Firstly, the vibration equation of the two-phase hybrid stepping motor is established via simplifying and linearizing the electromagnetic torque.Secondly, based on the vibration equation established, the disturbance torque model of SADA is created via force analysis and force system simplification. Thirdly, for precisely ground measuring the disturbance torque aroused by SADA, a measurement system,including a strain micro-vibrations measurement platform(SMMP) and a set of gravity unloading device(GUD), is designed.Fourthly, the proposed disturbance torque model is validated by measuring and simulating the disturbance torque produced via SADA driving rigid load through GUD. The results indicate that, the proposed disturbance torque model holds the ability to describe the disturbance torque caused by SADA with high precision. Finally, the disturbance torque emitted by SADA driving a flexible load, designed to simulate solar array, is modeled and simulated via using fixed-interface mode synthesis method(FIMSM). All the conclusions drawn from this article do have a meaningful help for studying the disturbance torque produced by SADA driving solar array on orbit.展开更多
文摘The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.
文摘A robust adaptive control approach is presented to improve the performance of the control scheme proposed in the authors' previous work, aiming at producing a low ripple hybrid stepping motor servo drive for precision profile tracking at a low speed. In order to construct a completely integrated control design philosophy to reduce torque ripple and at the same time to enhance tracking performance, the properties of nonlinear uncertainties in the system dynamics are uncovered, and then incorporated into the design of the controller. The system uncertainties concerned with ripple dynamics and other external disturbances are composed of two categories. The first category of uncertainties with linear parameterization arising from the detention effect is dealt with by the wellknown adaptive control method. A robust adaptive method is used to deal with the second category of uncertainties resulting from the non-sinusoidal flux distribution. The μ-modification scheme is used to cease parameter adaptation by the robust adaptive control law, thus ensuring that the trajectory tracking error asymptotically converges to a pre-specified boundary. Experiments are performed with a typical hybrid stepping motor to test its profile tracking accuracy. Results confirm the proposed control scheme.
基金supported by the National Natural Science Foundation of China (Nos.51375224,51405420)the Natural Science Foundation of Jiangsu Province (No.BK20140474)
文摘The existing resonant linear piezoelectric motors must operate with high working voltage in resonant condition,resulting in their narrow operating frequency range and poor running stability.Here,with the large displacement output characteristics of piezoelectric stacks,the trajectory at the drive foot of stator is firstly produced with two space quadrature piezoelectric actuators excited by sawtooth wave and square wave.Secondly,the friction drive principle of motor is used to analyze the working mechanisms of the continuous stepping motion.Finally,the motor prototype is designed and experiments are carried out.The experimental result shows that the motor can stably operate within the scope of 350 Hz to 750 Hz.When the excitation voltage is 30 Vand pre-load is 3Nor10 N,the lateral amplitude of the drive foot is approximately 4μm and the stable average interval ranges from3.1μm to 3.2μm with the error rate of 5%—7.5%.
基金Supported by t he National Natural Science Foundation of China ( No. 50435040) and the High Technology Research and Development Programme of China( No. 2003AA420010).
文摘We present the development of a novel prosthetic hand based on the underactuated mechanism. The aim is focused on increasing its dexterity while keeping the same dimension and weight of a traditional prosthetic device. The hybrid step motor is used as the actuator, which enables the finger to keep enough high contact torque on the grasped object with less energy consumption provided by the holding torque. The grasping force of the finger is estimated from the base joint torque, and the adoption of impedance control has provided compliance in the grasping. Also a parallel observer is used to switch over between the impedance control and the torque holding mode. The experimental results show the effectiveness of the design and control strategy.
文摘An indirect method of measuring the rotor position based on the magnetic reluctance variation is presented in the paper. A single-chip microprocessor 80C196KC is utilized to compensate the phase shift produced by the process of position signals. At the same time, a DSP (Data Signal Processor) unit is used to realize the speed and current closed-loops of the hybrid stepping motor system. At last, experimental results show the control system has excellent static and dynamic characteristics.
文摘Step motors, compared to other drive systems, are low-cost and easy to use devices. However, despite these undeniable advantages, they are characterized by some critical running conditions, due to the loss of synchronization between the stator's magnetic field and the rotor. In order to theoretically investigate such a behavior, several complex mathematical models have been developed, which require several parameters to be defined. For most step motors, such parameters cannot be easily drawn from their data-sheets; on the contrary, in this paper the authors refer to a simplified electro-mechanical model where the most of the parameters are known from data-sheets. The dependence between electrical and mechanical quantities can be investigated by an experimental point of view. At this aim, a specific novel test rig has been designed and developed for either static or dynamic characteristics measurement of small size step motors. In particular, the test rig allow to measure rotor's angular position, motor's torque, currents flowing in the motor's phases. The paper ends with the report of the results of several experimental tests, carried-out on a small-size motor in different running conditions, and with some preliminary remarks on the basis of the measures analysis.
基金Supported by the National Important and Special Project of China of the Twelfth Five-year Plan (2012ZX04001021)
文摘To change the current phenomenon of "Being an armchair strategist" in the research of a stepping motor, the virtual simu- lation system of stepping motor was developed using virtual reality technique. The basic principle of stepping motor was expounded. The development strategy of the simulation software is introduced. Some key problems and their solutions, including coordinate transformation of rotor and order of on-off electricity for stator, were put forward in system development. Finally, there are three virtual simulation examples of the on-off electricity way in this paper. This work provides a valuable auxiliary tool for the study of the stepping motor.
文摘A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...
基金Natural Science Foundation of Jilin Province,20220101216JC,Shupeng WangTalent Introduction Fund of Jilin University,451210330007,Shupeng Wang.
文摘By imitating the behavioral characteristics of some typical animals, researchers develop bionic stepping motors to extend the working range of piezoelectric materials and utilize their high accuracy advantage as well. A comprehensive review of the bionic stepping motors driven by piezoelectric materials is presented in this work. The main parts of stepping piezoelectric motors, including the feeding module, clamping module, and other critical components, are introduced elaborately. We classify the bionic stepping piezoelectric motors into inchworm motors, seal motors, and inertia motors depending on their main structure modules, and present the mutual transformation relationships among the three types. In terms of the relative position relationships among the main structure modules, each of the inchworm motors, seal motors, and inertia motors can further be divided into walker type, pusher type, and hybrid type. The configurations and working principles of all bionic stepping piezoelectric motors are reported, followed by a discussion of the advantages and disadvantages of the performance for each type. This work provides theoretical support and thoughtful insights for the understanding, analysis, design, and application of the bionic stepping piezoelectric motors.
文摘This paper proposes a new type of pulse launcher that applies the principle of linear motors. The stator, viz. gun barrel, of the launcher has a new structure of one segment of iron core consisting of 3 staggered laminations. This structure is helpful in advancing the thrust force per volume. Based on introducing the structure and the working principles, this paper resolves the electromagnetic thrusting force and performs mechanical analysis and experiments on the sample launcher. The research shows that this launcher is simple and brushless structure with brief controlling.
文摘This paper introduces a design to improve the radiotherapy accuracy of gamma knife. In this design, sensor is used to collect respiratory parameters and tumor displacement (caused by human respiration) model is established through optimization modeling. At the same time, data are transferred to single chip microcomputer (SCM) system by pressure sensor and then stepping motor is controlled by SCM. Finally, the intelligent positioning bed is under the control of stepping motor. As a result, the intelligent positioning bed can move reverse to respiratory law. The experimental results showed that this method can reduce the influence of respiration on tumor displacement, improving the accuracy of intelligent positioning bed with simple circuit and low cost at the same time.
文摘In order to solve the quality problem of the boneless elastic steel strip which was used to scrape the rain on the glass ,the solutions for testing the steel strip's pressure was put forward. A special structure pressure sensor based on a solenoid was designed. A master-slave computer architecture of the personal computer and Atmega48 was also adopted which makes the design of the friendly user's interface become possible. The results from the user's application indicate that the pressure testing system achieved the expected effect.
文摘An open looped ultrasonic stepping motor with self correction function was studied theoretically. In order to analyse the mechanism for the motor’s function, A linear ultrasonic self correcting stepping motor is designed, and the dynamics of the motor was studied. For clarification, a set of experiment device was also designed, the calculated results were consistent with the experimental ones.
文摘In order to investigate the feasibility regarding micro-satellite posture steering by laser micro-propulsion, a laser torsion pendulum has been set up so as to get first-hand basic physical and mechanical parameters on laser micro-propulsion. The instrumentation consists of the optical, mechanical, and electrical sub-systems. The optical system includes the m,-fin beam optics, the measuring optics, and the observation optics. The mechanical system includes the gyration apparatus, transverse translation stage, vertical translator, focal lenses translator, calibration pendulum translator, and vacuum chamber. For the electrical system a computer is used to control stepping motors to drive the above moving apparatuses. With this instrument the calibration experiment and laser ablation experiment have been carried out. The experimental results demonstrate that the instrument has the capacity to measure impulse down to 10^-8 N.s with an error of about 10.4%, which can satisfy the requirement of micro-impulse lneasurelnent.
文摘The disturbance torque generated via solar array drive assembly(SADA) can significantly degrade the key performance of satellite.The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-stage straight gear reducer. Firstly, the vibration equation of the two-phase hybrid stepping motor is established via simplifying and linearizing the electromagnetic torque.Secondly, based on the vibration equation established, the disturbance torque model of SADA is created via force analysis and force system simplification. Thirdly, for precisely ground measuring the disturbance torque aroused by SADA, a measurement system,including a strain micro-vibrations measurement platform(SMMP) and a set of gravity unloading device(GUD), is designed.Fourthly, the proposed disturbance torque model is validated by measuring and simulating the disturbance torque produced via SADA driving rigid load through GUD. The results indicate that, the proposed disturbance torque model holds the ability to describe the disturbance torque caused by SADA with high precision. Finally, the disturbance torque emitted by SADA driving a flexible load, designed to simulate solar array, is modeled and simulated via using fixed-interface mode synthesis method(FIMSM). All the conclusions drawn from this article do have a meaningful help for studying the disturbance torque produced by SADA driving solar array on orbit.