The initial shape of the secondary arc considerably influences its subsequent shape.To establish the model for the arcing time of the secondary arc and modify the single-phase reclosing sequence,theoretical and experi...The initial shape of the secondary arc considerably influences its subsequent shape.To establish the model for the arcing time of the secondary arc and modify the single-phase reclosing sequence,theoretical and experimental analysis of the evolution process of the short-circuit arc to the secondary arc is critical.In this study,an improved charge simulation method was used to develop the internal-space electric-field model of the short-circuit arc.The intensity of the electric field was used as an independent variable to describe the initial shape of the secondary arc.A secondary arc evolution model was developed based on this model.Moreover,the accuracy of the model was evaluated by comparison with physical experimental results.When the secondary arc current increased,the arcing time and dispersion increased.There is an overall trend of increasing arc length with increasing arcing time.Nevertheless,there is a reduction in arc length during arc ignition due to short circuits between the arc columns.Furthermore,the arcing time decreased in the range of 0°-90°as the angle between the wind direction and the x-axis increased.This work investigated the method by which short-circuit arcs evolve into secondary arcs.The results can be used to develop the secondary arc evolution model and to provide both a technical and theoretical basis for secondary arc suppression.展开更多
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ...The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this te...We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.展开更多
In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement wa...In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.展开更多
LS-DYNA program and the principle of ALE method were introduced, and the target features of the reinforced concrete penetration were analyzed by using the D material model and the ALE method. A numerical simulation ha...LS-DYNA program and the principle of ALE method were introduced, and the target features of the reinforced concrete penetration were analyzed by using the D material model and the ALE method. A numerical simulation has been done to show the penetration visually and veritably. The simulation results are analyzed carefully and explicitly prove their significance to the research of reinforced concrete penetration.展开更多
To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and invest...To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.展开更多
Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equ...A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.展开更多
Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstl...Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures.展开更多
Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHT...Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHTC) between the surface of slab casting and inner mold. Calculated temperature dependent values of IHTC were obtained from a numerical solution. The calculated temperatures agreed well with the measurement of cooling profile.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the ...A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.展开更多
The accurate measurement of the fill level in the ball mill has not been resolved because of the interplay of many variable factors, which led the mill to be operated under the uneconomical condition and lost a lot of...The accurate measurement of the fill level in the ball mill has not been resolved because of the interplay of many variable factors, which led the mill to be operated under the uneconomical condition and lost a lot of energy. At present, some methods, such as vibration method and acoustic method, have been applied for measuring the fill level by the researchers. Aiming at the problem of the traditional methods for measuring the fill level, that is, the feature variables of the fill level suffer the influences of the ball load and the water content of the coal, a novel method to measure the fill level is proposed and a possible relation between the fill level and the angular position of the maximum vibration point on the mill shell is investigated. The angular positions of the maximum vibration point on the mill shell for different fill level cases are calculated theoretically under two assumptions, respectively. Meanwhile the charge motions of the mill for different fill level cases are simulated with the discrete element method (DEM). And the simulation results are verified by comparing the motion trajectories of steel balls and power draft of the mill. The simulated movement trajectories of the outmost layer steel balls in the mill are monitored and analyzed to obtain the angular positions of the maximum vibration point on the mill shell. Both the results of the theoretical calculation and the 3D DEM simulation show that the position of the maximum vibration point on the mill shell moves to a lower angular positions as the fill level decreasing, which provides a new idea for measuring the filllevel accurately.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatial...We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatially-changed illumination,and uncertainties of block size in traditional method.The proposed method first partitions the image into square blocks that reflect local characteristics of the image.After image partitioning,each block is binarized using Otsu’s thresholding method.To minimize the influence of the block size and the boundary effect,we incorporate Monte-Carlo simulation into the binarization algorithm.Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map,which illustrates the probability of each pixel classified as foreground.By setting a probability threshold,and separating foreground and background of the source image,the final binary image can be obtained.The described method has been tested by benchmark tests.Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.展开更多
This paper provides an overview of the developments in analytical and testing methods and experimental simulations on gas hydrate in China.In the laboratory,the analyses and experiments of gas hydrate can provide usef...This paper provides an overview of the developments in analytical and testing methods and experimental simulations on gas hydrate in China.In the laboratory,the analyses and experiments of gas hydrate can provide useful parameters for hydrate exploration and exploitation.In recent years,modem analytical instruments and techniques,including Laser Raman spectroscopy (Raman),X-ray diffraction (XRD),X-ray computed tomography (X-CT),scanning electron microscope (SEM),nuclear magnetic resonance (NMR) and high pressure differential scanning calorimetry (DSC),were applied in the study of structure,formation mechanisms,phase equilibrium,thermal physical properties and so forth of gas hydrates.The detection technology and time-domain reflectometry (TDR)technique are integrated to the experimental devices to study the physical parameters of gas hydrates,such as the acoustics,resistivity,thermal,and mechanical properties.It is believed that the various analytical techniques together with the experimental simulations from large-scale to micro-scale on gas hydrate will play a significant role and provide a powerful support for future gas hydrate researches.展开更多
In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models...In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas.展开更多
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a...Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.展开更多
基金supported by National Natural Science Foundation of China(Nos.92066108 and 51277061)。
文摘The initial shape of the secondary arc considerably influences its subsequent shape.To establish the model for the arcing time of the secondary arc and modify the single-phase reclosing sequence,theoretical and experimental analysis of the evolution process of the short-circuit arc to the secondary arc is critical.In this study,an improved charge simulation method was used to develop the internal-space electric-field model of the short-circuit arc.The intensity of the electric field was used as an independent variable to describe the initial shape of the secondary arc.A secondary arc evolution model was developed based on this model.Moreover,the accuracy of the model was evaluated by comparison with physical experimental results.When the secondary arc current increased,the arcing time and dispersion increased.There is an overall trend of increasing arc length with increasing arcing time.Nevertheless,there is a reduction in arc length during arc ignition due to short circuits between the arc columns.Furthermore,the arcing time decreased in the range of 0°-90°as the angle between the wind direction and the x-axis increased.This work investigated the method by which short-circuit arcs evolve into secondary arcs.The results can be used to develop the secondary arc evolution model and to provide both a technical and theoretical basis for secondary arc suppression.
基金the National Natural Science Foundation of China(No.51875062,No.52205336)the China Postdoctoral Science Foundation(No.2021M700567).
文摘The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金This research was supported by the National Natural Science Foundation of China (Nos. 41230210 and 41204074), the Science Foundation of the Education Department of Yunnan Province (No. 2013Z152), and Statoil Company (Contract No. 4502502663).
文摘We propose a symplectic partitioned Runge-Kutta (SPRK) method with eighth-order spatial accuracy based on the extended Hamiltonian system of the acoustic waveequation. Known as the eighth-order NSPRK method, this technique uses an eighth-orderaccurate nearly analytic discrete (NAD) operator to discretize high-order spatial differentialoperators and employs a second-order SPRK method to discretize temporal derivatives.The stability criteria and numerical dispersion relations of the eighth-order NSPRK methodare given by a semi-analytical method and are tested by numerical experiments. We alsoshow the differences of the numerical dispersions between the eighth-order NSPRK methodand conventional numerical methods such as the fourth-order NSPRK method, the eighth-order Lax-Wendroff correction (LWC) method and the eighth-order staggered-grid (SG)method. The result shows that the ability of the eighth-order NSPRK method to suppress thenumerical dispersion is obviously superior to that of the conventional numerical methods. Inthe same computational environment, to eliminate visible numerical dispersions, the eighth-order NSPRK is approximately 2.5 times faster than the fourth-order NSPRK and 3.4 timesfaster than the fourth-order SPRK, and the memory requirement is only approximately47.17% of the fourth-order NSPRK method and 49.41% of the fourth-order SPRK method,which indicates the highest computational efficiency. Modeling examples for the two-layermodels such as the heterogeneous and Marmousi models show that the wavefields generatedby the eighth-order NSPRK method are very clear with no visible numerical dispersion.These numerical experiments illustrate that the eighth-order NSPRK method can effectivelysuppress numerical dispersion when coarse grids are adopted. Therefore, this methodcan greatly decrease computer memory requirement and accelerate the forward modelingproductivity. In general, the eighth-order NSPRK method has tremendous potential value forseismic exploration and seismology research.
基金The National Natural Science Foundation of China(No.51378121)the Fok Ying Tung Education Foundation(No.141076)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0164)
文摘In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.
文摘LS-DYNA program and the principle of ALE method were introduced, and the target features of the reinforced concrete penetration were analyzed by using the D material model and the ALE method. A numerical simulation has been done to show the penetration visually and veritably. The simulation results are analyzed carefully and explicitly prove their significance to the research of reinforced concrete penetration.
文摘To develop an efficient and robust aerodynamic analysis method for numerical optimization designs of wing and complex configuration, a combination of matrix preconditioning and multigrid method is presented and investigated. The time derivatives of three-dimensional Navier-Stokes equations are preconditioned by Choi-Merkle preconditioning matrix that is originally designed for two-dimensional low Mach number viscous flows. An extension to three-dimensional viscous flow is implemented, and a method improving the convergence for transonic flow is proposed. The space discretizaition is performed by employing a finite-volume cell-centered scheme and using a central difference. The time marching is based on an explicit Rtmge-Kutta scheme proposed by Jameson. An efficient FAS multigrid method is used to accelerate the convergence to steady-state solutions. Viscous flows over ONERA M6 wing and M100 wing are numerically simulated with Mach numbers ranging from 0.010 to 0.839. The inviscid flow over the DLR-F4 wing-body configuration is also calculated to preliminarily examine the performance of the presented method for complex configuration. The computed results are compared with the experimental data and good agreement is achieved. It is shown that the presented method is efficient and robust for both compressible and incompressible flows and is very attractive for aerodynamic optimization designs of wing and complex configuration.
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
基金Project supported by the National Natural Science Foundation of China(Nos.91752118,11672305,11232011,and 11572331)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSWSYS002)
文摘A novel method is proposed to combine the wall-modeled large-eddy simulation(LES) with the diffuse-interface direct-forcing immersed boundary(IB) method.The new developments in this method include:(i) the momentum equation is integrated along the wall-normal direction to link the tangential component of the effective body force for the IB method to the wall shear stress predicted by the wall model;(ii) a set of Lagrangian points near the wall are introduced to compute the normal component of the effective body force for the IB method by reconstructing the normal component of the velocity. This novel method will be a classical direct-forcing IB method if the grid is fine enough to resolve the flow near the wall. The method is used to simulate the flows around the DARPA SUBOFF model. The results obtained are well comparable to the measured experimental data and wall-resolved LES results.
文摘Considering the limitation of computational capacity, a new finite element solution is used to simulate the welding deformation of the side sill of railroad car' s bogie frame based on the local-global method. Firstly, a volumetric heat source defined by a double ellipsoid is adopted to simulate the thermal distributions of the arc welding process. And then, the local models extracted from the global model are computed with refined meshes. On these bases, the global distortions of the subject studied are ascertained by transferring the inner forces of computed local models to the global model. It indicates that the local-global method is feasible for simulating the large welded structures by comparing the computed results with the corresponding actual measured values. The work provides basis for optimizing the welding sequence and clamping conditions, and has theoretical values and engineering significance in the integral design, manufacturing technique selection of the bogie frame, as well as other kinds of large welded structures.
基金supported by National Basic Research Program of China(No.2005CB724105)National Natural Science Foundation of China (No.10477010)National High Technical Research and Development Program of China(No.2007AA04Z141)
文摘Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHTC) between the surface of slab casting and inner mold. Calculated temperature dependent values of IHTC were obtained from a numerical solution. The calculated temperatures agreed well with the measurement of cooling profile.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
基金supported by the National Natural Science Foundation of China (11302238, 11232011. and 11572331)support from the Strategic Priority Research Program (XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100: Nonlinear science)
文摘A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.
基金supported by National Natural Science Foundation of China (Grant No. 50775035)New Doctor Teacher Foundation of Southeast University of China (Grant No. 9202000024)
文摘The accurate measurement of the fill level in the ball mill has not been resolved because of the interplay of many variable factors, which led the mill to be operated under the uneconomical condition and lost a lot of energy. At present, some methods, such as vibration method and acoustic method, have been applied for measuring the fill level by the researchers. Aiming at the problem of the traditional methods for measuring the fill level, that is, the feature variables of the fill level suffer the influences of the ball load and the water content of the coal, a novel method to measure the fill level is proposed and a possible relation between the fill level and the angular position of the maximum vibration point on the mill shell is investigated. The angular positions of the maximum vibration point on the mill shell for different fill level cases are calculated theoretically under two assumptions, respectively. Meanwhile the charge motions of the mill for different fill level cases are simulated with the discrete element method (DEM). And the simulation results are verified by comparing the motion trajectories of steel balls and power draft of the mill. The simulated movement trajectories of the outmost layer steel balls in the mill are monitored and analyzed to obtain the angular positions of the maximum vibration point on the mill shell. Both the results of the theoretical calculation and the 3D DEM simulation show that the position of the maximum vibration point on the mill shell moves to a lower angular positions as the fill level decreasing, which provides a new idea for measuring the filllevel accurately.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
基金Project(2018YFC1505401)supported by the National Key R&D Program of ChinaProject(41702310)supported by the National Natural Science Foundation of China+1 种基金Project(SKLGP2017K014)supported by the Foundation of State Key Laboratory of Geohazard Prevention and Geo-environment Protection,ChinaProject(2018JJ3644)supported by the Natural Science Foundation of Hunan Province,China
文摘We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatially-changed illumination,and uncertainties of block size in traditional method.The proposed method first partitions the image into square blocks that reflect local characteristics of the image.After image partitioning,each block is binarized using Otsu’s thresholding method.To minimize the influence of the block size and the boundary effect,we incorporate Monte-Carlo simulation into the binarization algorithm.Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map,which illustrates the probability of each pixel classified as foreground.By setting a probability threshold,and separating foreground and background of the source image,the final binary image can be obtained.The described method has been tested by benchmark tests.Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.
文摘This paper provides an overview of the developments in analytical and testing methods and experimental simulations on gas hydrate in China.In the laboratory,the analyses and experiments of gas hydrate can provide useful parameters for hydrate exploration and exploitation.In recent years,modem analytical instruments and techniques,including Laser Raman spectroscopy (Raman),X-ray diffraction (XRD),X-ray computed tomography (X-CT),scanning electron microscope (SEM),nuclear magnetic resonance (NMR) and high pressure differential scanning calorimetry (DSC),were applied in the study of structure,formation mechanisms,phase equilibrium,thermal physical properties and so forth of gas hydrates.The detection technology and time-domain reflectometry (TDR)technique are integrated to the experimental devices to study the physical parameters of gas hydrates,such as the acoustics,resistivity,thermal,and mechanical properties.It is believed that the various analytical techniques together with the experimental simulations from large-scale to micro-scale on gas hydrate will play a significant role and provide a powerful support for future gas hydrate researches.
基金National Basic Research Program of China Under Grant No. 2007CB714200National Natural Science Foundation of China Under Grant No. 90715038
文摘In this paper, a method to develop a hierarchy of explicit recursion formulas for numerical simulation in an irregular grid for scalar wave equations is presented and its accuracy is illustrated via 2-D and 1-D models. Approaches to develop the stable formulas which are of 2M-order accuracy in both time and space with Mbeing a positive integer for regular grids are discussed and illustrated by constructing the second order (M= 1) and the fourth order (M = 2) recursion formulas.
基金supported by National Natural Science Foundation of China(No. 50175034).
文摘Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.