To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was ...To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.展开更多
The constant embrittlement curve for constant segregation concentration on grain boundary of impurity element P and relationship between equilibrium grain boundary segregation concentration and operation time for 2.25...The constant embrittlement curve for constant segregation concentration on grain boundary of impurity element P and relationship between equilibrium grain boundary segregation concentration and operation time for 2.25Cr-1Mo steel were derived based on the theory of equilibrium grain boundary segregation.The mechanism of step-cooling test and mechanism of de-embrittlement for 2.25Cr-1Mo steel were explained.The segregation rate will increase but equilibrium grain boundary segregation concentration of impurity element P will decrease as temperature increases in the range of temper embrittlement temperature.There is one critical temperature of embrittlement corresponding to each embrittlement degree.When the further heat treating temperature is higher than critical temperature,the heat treating will become a de-embrittlement process;otherwise,it will be an embrittlement process.The critical temperature of embrittlement will shift to the direction of low temperature as further embrittlement.As a result,some stages of step-cooling test would change into a de-embrittlement process.The grain boundary desegregation function of impurity element P was deduced based on the theory of element diffusion,and the theoretical calculation and experimental results show that the further embrittlement or de-embrittlement mechanism can be interpreted qualitatively and quantitatively by combining the theory of equilibrium grain boundary segregation with constant embrittlement curve.展开更多
Microstructure evolution of C-Si-Mn-Nb,C-Si-Mn-Cr-Nb and C-Si-Mn-Cr-Mo-Nb tested steels during step-cooling process were studied.Effects of alloying element and process data on microstructure and mechanical properties...Microstructure evolution of C-Si-Mn-Nb,C-Si-Mn-Cr-Nb and C-Si-Mn-Cr-Mo-Nb tested steels during step-cooling process were studied.Effects of alloying element and process data on microstructure and mechanical properties of high strength Nb bearing DP steel were analyzed,to illustrate the relationship between alloy composition design and process control stability during DP microstructure and property control.It is shown that,700MPa ferrite and martensite DP steel is obtained respectively by three kinds of composition tested steel under different step-cooling process.C-Si-Mn-Nb steel with simple alloying design of low cost is provided with low hardenability,and has strong process sensibility during microstructure evolution.DP microstructure of ferrite and martensite of C-Si-Mn-Nb steel just can be obtained by coiling at low temperature of 250℃.The process control stability of C-Si-Mn-Cr-Nb steel is stronger than that of C-Si-Mn-Nb steel,to obtain DP microstructure by coiling at low temperature.C-Si-Mn-Cr-Mo-Nb steel with complex alloying design of high cost is provided with excellent process control stability.Alloy element Mo can promote stabilizing of metastable austenite to obtain F+M DP microstructure by coiling at medium temperature of 600℃.展开更多
文摘To improve the competitive relationship between strength and toughness,the effect of low undercooling in austenite(γ)on the microstructure and mechanical properties of commercial vanadium-containing wheel steels was studied using an optical microscope(OM),a scanning electron microscope(SEM),a transmission electron microscope(TEM),and mechanical property tests.The results show that when the wheel steel is slightly cooled to an appropriate temperature above A c3 point for a short time after it has been austenitized at an elevated temperature,the solid-solved vanadium is pre-precipitated in the form of V(C,N)second phase semicoherent with the matrix in the originalγgrain.This phase hardly participates in matrix strengthening.Due to the small mismatch between V(C,N)and ferrite(α),during the subsequent-cooling phase transformation stage,the pre-precipitated second phase becomes theαnucleation point,causing granular and ellipsoidal intragranular ferrite(IGF,with an average size of 4-6μm)to nucleate in the originalγ.The IGF production and strength loss increases with the increasing undercooling degree.Based on this,Masteel Co.,Ltd.has developed a new heat-treatment step-cooling process that can promote the formation of IGF,considerably improving the level and uniformity of fracture toughness on the premise that the strength and hardness of the wheel are almost unchanged.
基金Item Sponsored by Graduate Student Scientific Innovation Project of Jiangsu Province of China(CX09B_131Z)
文摘The constant embrittlement curve for constant segregation concentration on grain boundary of impurity element P and relationship between equilibrium grain boundary segregation concentration and operation time for 2.25Cr-1Mo steel were derived based on the theory of equilibrium grain boundary segregation.The mechanism of step-cooling test and mechanism of de-embrittlement for 2.25Cr-1Mo steel were explained.The segregation rate will increase but equilibrium grain boundary segregation concentration of impurity element P will decrease as temperature increases in the range of temper embrittlement temperature.There is one critical temperature of embrittlement corresponding to each embrittlement degree.When the further heat treating temperature is higher than critical temperature,the heat treating will become a de-embrittlement process;otherwise,it will be an embrittlement process.The critical temperature of embrittlement will shift to the direction of low temperature as further embrittlement.As a result,some stages of step-cooling test would change into a de-embrittlement process.The grain boundary desegregation function of impurity element P was deduced based on the theory of element diffusion,and the theoretical calculation and experimental results show that the further embrittlement or de-embrittlement mechanism can be interpreted qualitatively and quantitatively by combining the theory of equilibrium grain boundary segregation with constant embrittlement curve.
文摘Microstructure evolution of C-Si-Mn-Nb,C-Si-Mn-Cr-Nb and C-Si-Mn-Cr-Mo-Nb tested steels during step-cooling process were studied.Effects of alloying element and process data on microstructure and mechanical properties of high strength Nb bearing DP steel were analyzed,to illustrate the relationship between alloy composition design and process control stability during DP microstructure and property control.It is shown that,700MPa ferrite and martensite DP steel is obtained respectively by three kinds of composition tested steel under different step-cooling process.C-Si-Mn-Nb steel with simple alloying design of low cost is provided with low hardenability,and has strong process sensibility during microstructure evolution.DP microstructure of ferrite and martensite of C-Si-Mn-Nb steel just can be obtained by coiling at low temperature of 250℃.The process control stability of C-Si-Mn-Cr-Nb steel is stronger than that of C-Si-Mn-Nb steel,to obtain DP microstructure by coiling at low temperature.C-Si-Mn-Cr-Mo-Nb steel with complex alloying design of high cost is provided with excellent process control stability.Alloy element Mo can promote stabilizing of metastable austenite to obtain F+M DP microstructure by coiling at medium temperature of 600℃.