This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity i...This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.展开更多
A membrane element model with bending modification based on element moment equilibrium is proposed for the first time by the authors, who apply the element model in one step inverse method and simulate the forming pro...A membrane element model with bending modification based on element moment equilibrium is proposed for the first time by the authors, who apply the element model in one step inverse method and simulate the forming process of a flower-shaped box using the membrane element model with and without this modification. The numerical results are compared with those of the incremental method to verify the validity of the element model developed in this paper.展开更多
文摘This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.
基金Project supported by the National Natural Science Foundation of China (No. 51075187)
文摘A membrane element model with bending modification based on element moment equilibrium is proposed for the first time by the authors, who apply the element model in one step inverse method and simulate the forming process of a flower-shaped box using the membrane element model with and without this modification. The numerical results are compared with those of the incremental method to verify the validity of the element model developed in this paper.