A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we bu...A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.展开更多
This paper presents the design and implementation of a Stepper Motor using Nexys2 circuit board based on a Xilinx Spartan 3E Field Programmable Gate Array (FPGA) device with VHDL code. The algorithm implemented on FPG...This paper presents the design and implementation of a Stepper Motor using Nexys2 circuit board based on a Xilinx Spartan 3E Field Programmable Gate Array (FPGA) device with VHDL code. The algorithm implemented on FPGA allows a substantial decrease of the equivalent processing time developed by different velocity controllers. The Stepper Speed control is achieved using VHDL code, and the hardware digital circuit is designed for a programmable rotational stepper motor using VHDL as a tool and FPGA as a target technology. The 50 MHZ provided by the starter kit is divided to obtain the necessary delay time between the motor phases that ranges between 2 - 10 m seconds. Though output selections, the direction of rotation of the stepper motor besides the magnitude of the angle of movement and the rotation speed can be controlled. The major advantage of using reconfigurable hardware (FPGA) in implementing the Stepper Motor instead of a discrete digital component is that it makes modifications to the design easy and quick and also, the total design hence represents an embedded system (works without computer). The total programmable hardware design that controlled on the stepper motor movement, occupied an area that did not exceed 12% of the chip resources.展开更多
Stepper motor driven systems are widely used in industrial applications. They are mainly used for their low cost open-loop high performance. However, as dynamic systems need to be increasingly faster and their motion ...Stepper motor driven systems are widely used in industrial applications. They are mainly used for their low cost open-loop high performance. However, as dynamic systems need to be increasingly faster and their motion more precise, it is important to have an open-loop system which is accurate and reliable. In this paper, we present a novel technique in which a genetic algorithm (GA) based lookup table approach is used to find the optimal stepping sequence of an open-loop stepper motor system. The optimal sequence objective is to minimize residual vibration and to accurately follow trajectory. A genetic algorithm is used to find the best stepping sequence which minimizes the error and improves the system performance. Numerical simulation has showed the effectiveness of our approach to improve the system performance for both position and velocity. The optimized system reduced the residual vibration and was able to follow the trajectory with minimal error.展开更多
A novel ionic polymer–metal composite(IPMC)actuated stepper motor was developed in order to demonstrate an innovative design process for complete IPMC systems.The motor was developed by utilizing a novel model for IP...A novel ionic polymer–metal composite(IPMC)actuated stepper motor was developed in order to demonstrate an innovative design process for complete IPMC systems.The motor was developed by utilizing a novel model for IPMC actuators integrated with the complete mechanical model of the motor.The dynamic,nonlinear IPMC model can accurately predict the displacement and force actuation in air for a large range of input voltages as well as accounting for interactions with mechanical systems and external loads.By integrating this geometrically scalable IPMC model with a mechanical model of the motor mechanism an appropriate size IPMC strip has been chosen to achieve the required motor specifications.The entire integrated system has been simulated and its performance verified.The system has been built and the experimental results validated to show that the motor works as simulated and can indeed achieve continuous 360rotation,similar to conventional motors.This has proven that the model is an indispensable design tool for integrated IPMC actuators into real systems.This newly developed system has demonstrated the complete design process for smart material actuator systems,representing a large step forward and aiding in the progression of IPMCs towards wide acceptance as replacements for traditional actuators.展开更多
文摘A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.
文摘This paper presents the design and implementation of a Stepper Motor using Nexys2 circuit board based on a Xilinx Spartan 3E Field Programmable Gate Array (FPGA) device with VHDL code. The algorithm implemented on FPGA allows a substantial decrease of the equivalent processing time developed by different velocity controllers. The Stepper Speed control is achieved using VHDL code, and the hardware digital circuit is designed for a programmable rotational stepper motor using VHDL as a tool and FPGA as a target technology. The 50 MHZ provided by the starter kit is divided to obtain the necessary delay time between the motor phases that ranges between 2 - 10 m seconds. Though output selections, the direction of rotation of the stepper motor besides the magnitude of the angle of movement and the rotation speed can be controlled. The major advantage of using reconfigurable hardware (FPGA) in implementing the Stepper Motor instead of a discrete digital component is that it makes modifications to the design easy and quick and also, the total design hence represents an embedded system (works without computer). The total programmable hardware design that controlled on the stepper motor movement, occupied an area that did not exceed 12% of the chip resources.
文摘Stepper motor driven systems are widely used in industrial applications. They are mainly used for their low cost open-loop high performance. However, as dynamic systems need to be increasingly faster and their motion more precise, it is important to have an open-loop system which is accurate and reliable. In this paper, we present a novel technique in which a genetic algorithm (GA) based lookup table approach is used to find the optimal stepping sequence of an open-loop stepper motor system. The optimal sequence objective is to minimize residual vibration and to accurately follow trajectory. A genetic algorithm is used to find the best stepping sequence which minimizes the error and improves the system performance. Numerical simulation has showed the effectiveness of our approach to improve the system performance for both position and velocity. The optimized system reduced the residual vibration and was able to follow the trajectory with minimal error.
文摘A novel ionic polymer–metal composite(IPMC)actuated stepper motor was developed in order to demonstrate an innovative design process for complete IPMC systems.The motor was developed by utilizing a novel model for IPMC actuators integrated with the complete mechanical model of the motor.The dynamic,nonlinear IPMC model can accurately predict the displacement and force actuation in air for a large range of input voltages as well as accounting for interactions with mechanical systems and external loads.By integrating this geometrically scalable IPMC model with a mechanical model of the motor mechanism an appropriate size IPMC strip has been chosen to achieve the required motor specifications.The entire integrated system has been simulated and its performance verified.The system has been built and the experimental results validated to show that the motor works as simulated and can indeed achieve continuous 360rotation,similar to conventional motors.This has proven that the model is an indispensable design tool for integrated IPMC actuators into real systems.This newly developed system has demonstrated the complete design process for smart material actuator systems,representing a large step forward and aiding in the progression of IPMCs towards wide acceptance as replacements for traditional actuators.