Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,cha...Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.展开更多
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati...A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.展开更多
By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based ...By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based on different parameters.Compared with the existing algorithms through the simulation,the proposed algorithm has faster convergence speed and smaller steady state error.展开更多
The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the int...The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.展开更多
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int...A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.展开更多
In four—dimensional variational data assimilation (4DVAR) technology, how to calculate the optimal step size is always a very important and indeed difficult task. It is directly related to the computational efficienc...In four—dimensional variational data assimilation (4DVAR) technology, how to calculate the optimal step size is always a very important and indeed difficult task. It is directly related to the computational efficiency. In this research, a new method is proposed to calculate the optimal step size more effectively. Both nonlinear one—dimensional advection equation and two—dimensional inertial wave equation are used to test and compare the influence of different methods of the optimal step size calculations on the iteration steps, as well as the simulation results of 4DVAR processes. It is in evidence that the different methods have different influences. The calculating method is very important to determining whether the iteration is convergent or not and whether the convergence rate is large or small. If the calculating method of optimal step size is properly determined as demonstrated in this paper, then it can greatly enlarge the convergence rate and further greatly decrease the iteration steps. This research is meaningful since it not only makes an important improvement on 4DVAR theory, but also has useful practical application in improving the computational efficiency and saving the computational time. Key words 4DVAR - Optimal step size - Iterative convergence rate This work was supported by the National Natural Science Foundation under grants: 49735180 and 49675259, the “973 Project? CHERES(G 1998040907), the Project of Natural Science Foundation of Jiangsu Province(BK99020), and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars.展开更多
We present a new least-mean-square algorithm of adaptive filtering to improve the signal to noise ratio for magneto-cardiography data collected with high-temperature SQUID-based magnetometers. By frequently adjusting ...We present a new least-mean-square algorithm of adaptive filtering to improve the signal to noise ratio for magneto-cardiography data collected with high-temperature SQUID-based magnetometers. By frequently adjusting the adaptive parameter a go systematic optimum values in the course of the programmed procedure, the convergence is accelerated with a highest speed and the minimum steady-state error is obtained simultaneously. This algorithm may be applied to eliminate other non-steady relevant noises as well.展开更多
This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimi...This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimization of the three performance objectives including initial convergent speed, trace ability of the time-varying system and steady disregulation. The paper demonstrates the convergence of the algorithm accompanied by random noise,展开更多
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi...We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in th...Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.展开更多
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS...With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.Du...In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.展开更多
In this paper, we applied RobustICA to speech separation and made a comprehensive comparison to FastICA according to the separation results. Through a series of speech signal separation test, RobustICA reduced the sep...In this paper, we applied RobustICA to speech separation and made a comprehensive comparison to FastICA according to the separation results. Through a series of speech signal separation test, RobustICA reduced the separation time consumed by FastICA with higher stability, and speeches separated by RobustICA were proved to having lower separation errors. In the 14 groups of speech separation tests, separation time consumed by RobustICA was 3.185 s less than FastICA by nearly 68%. Separation errors of FastICA had a float between 0.004 and 0.02, while the errors of RobustlCA remained around 0.003. Furthermore, compared to FastICA, RobustlCA showed better separation robustness. Experimental results showed that RohustICA was successful to apply to the speech signal separation, and showed superiority to FastlCA in speech separation.展开更多
The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information.However,the separation performance depends largely on the construction of reference signals.To improve the r...The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information.However,the separation performance depends largely on the construction of reference signals.To improve the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed,the reference-based cubic blind deconvolution algorithm is proposed in this paper.The proposed algorithm can be combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration.The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function is theoretically proved.By deriving the optimal step size of gradient iteration under the new contrast function,we propose an efficient adaptive step optimization method.Furthermore,the contribution evaluation method based on vector projection is presented to implement the source contribution evaluation.Numerical simulation analysis is carried out to validate the availability and superiority of this method.Further tests given by the simulated satellite experiment and satellite ground experiment also confirm the effectiveness.The signals of control moment gyroscope and flywheel were extracted,respectively,and the contribution evaluation of vibration sources to the sensitive load area was realized.This research proposes a more accurate and robust algorithm for the source separation and provides an effective tool for the quantitative identification of the mechanical vibration sources.展开更多
More and more new types of observational data provide many new opportunities for improving numerical weather forecasts. Among these, the GPS (Global Positioning System) bending angle is undoubtedly very important. The...More and more new types of observational data provide many new opportunities for improving numerical weather forecasts. Among these, the GPS (Global Positioning System) bending angle is undoubtedly very important. There are many advantages of the GPS bending angle, such as high resolution, availability in all weather conditions, and global data coverage. Thus it is very valuable to assimilate GPS bending angle data into numerical weather models. This paper introduces how to obtain and assimilate the GPS bending angle. There are two methods of assimilation: the indirect method and direct method, and they are both introduced in this paper. During the minimizing process of variational assimilation, calculation efficiency is very important and the optimal step size greatly influences the algorithm efficiency. Based on the characteristics of the minimizing algorithm, we obtain an adaptive method for calculating the optimizing step suitable for all kinds of minimization algorithms through mathematical deduction. Finally, a numerical variational assimilation experiment is performed using the GPS bending angle data of 11 October 1995. The numerical results indicate the validity of the variational assimilation method and the adaptive method introduced here.展开更多
An improved scalar Costa scheme (SCS) was proposed by using improved Watson perceptual model to adaptively decide quantization step size and scaling factor. The improved scheme equals to embed hiding data based on an ...An improved scalar Costa scheme (SCS) was proposed by using improved Watson perceptual model to adaptively decide quantization step size and scaling factor. The improved scheme equals to embed hiding data based on an actual image. In order to withstand amplitude scaling attack, the Watson perceptual model was redefined, and the improved scheme using the new definition can insure quantization step size in decoder that is proportional to amplitude scaling attack factor. The performance of the improved scheme outperforms that of SCS with fixed quantization step size. The improved scheme combines information theory and visual model.展开更多
Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficienc...Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.展开更多
基金the National Natural Science Foundation of China(No.61601296,61701295)the Science and Technology Innovation Action Plan Project of Shanghai Science and Technology Commission(No.20511103500)the Talent Program of Shanghai University of Engineering Science(No.2018RC43).
文摘Filter bank multicarrier quadrature amplitude modulation(FBMC-QAM)will encounter inter-ference and noise during the process of channel transmission.In order to suppress the interference in the communication system,channel equalization is carried out at the receiver.Given that the con-ventional least mean square(LMS)equilibrium algorithm usually suffer from drawbacks such as the inability to converge quickly in large step sizes and poor stability in small step sizes when searching for optimal weights,in this paper,a design scheme for adaptive equalization with dynamic step size LMS optimization is proposed,which can further improve the convergence and error stability of the algorithm by calling the Sigmoid function and introducing three new parameters to control the range of step size values,adjust the steepness of step size,and reduce steady-state errors in small step sta-ges.Theoretical analysis and simulation results demonstrate that compared with the conventional LMS algorithm and the neural network-based residual deep neural network(Res-DNN)algorithm,the adopted dynamic step size LMS optimization scheme can not only obtain faster convergence speed,but also get smaller error values in the signal recovery process,thereby achieving better bit error rate(BER)performance.
基金supported by the National Natural Science Foundation of China(Grant No.51079157)
文摘A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
基金Natural Science Foundation of Shandong Province of China(No.ZR2012FM011)Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘By analyzing algorithms available for variable step size least mean square(LMS)adaptive filter,a new modified LMS adaptive filtering algorithm with variable step size is proposed,along with performance analysis based on different parameters.Compared with the existing algorithms through the simulation,the proposed algorithm has faster convergence speed and smaller steady state error.
基金supported by the National Natural Science Foundation of China[grant numbers 41375110,11471244]
文摘The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.
文摘A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.
文摘In four—dimensional variational data assimilation (4DVAR) technology, how to calculate the optimal step size is always a very important and indeed difficult task. It is directly related to the computational efficiency. In this research, a new method is proposed to calculate the optimal step size more effectively. Both nonlinear one—dimensional advection equation and two—dimensional inertial wave equation are used to test and compare the influence of different methods of the optimal step size calculations on the iteration steps, as well as the simulation results of 4DVAR processes. It is in evidence that the different methods have different influences. The calculating method is very important to determining whether the iteration is convergent or not and whether the convergence rate is large or small. If the calculating method of optimal step size is properly determined as demonstrated in this paper, then it can greatly enlarge the convergence rate and further greatly decrease the iteration steps. This research is meaningful since it not only makes an important improvement on 4DVAR theory, but also has useful practical application in improving the computational efficiency and saving the computational time. Key words 4DVAR - Optimal step size - Iterative convergence rate This work was supported by the National Natural Science Foundation under grants: 49735180 and 49675259, the “973 Project? CHERES(G 1998040907), the Project of Natural Science Foundation of Jiangsu Province(BK99020), and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars.
文摘We present a new least-mean-square algorithm of adaptive filtering to improve the signal to noise ratio for magneto-cardiography data collected with high-temperature SQUID-based magnetometers. By frequently adjusting the adaptive parameter a go systematic optimum values in the course of the programmed procedure, the convergence is accelerated with a highest speed and the minimum steady-state error is obtained simultaneously. This algorithm may be applied to eliminate other non-steady relevant noises as well.
基金Supported by Natural Science Foundation of Beijing of China (No.2005AA501140)
文摘This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimization of the three performance objectives including initial convergent speed, trace ability of the time-varying system and steady disregulation. The paper demonstrates the convergence of the algorithm accompanied by random noise,
基金Open Access funding enabled and organized by Projekt DEAL.
文摘We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications.
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
文摘Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.
基金Project (192450/I30) supported by the Norwegian Research Council under the Strategic University Program
文摘With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
文摘In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.
基金National Natural Science Foundation of Chinagrant number:61271082,61201029,61102094
文摘In this paper, we applied RobustICA to speech separation and made a comprehensive comparison to FastICA according to the separation results. Through a series of speech signal separation test, RobustICA reduced the separation time consumed by FastICA with higher stability, and speeches separated by RobustICA were proved to having lower separation errors. In the 14 groups of speech separation tests, separation time consumed by RobustICA was 3.185 s less than FastICA by nearly 68%. Separation errors of FastICA had a float between 0.004 and 0.02, while the errors of RobustlCA remained around 0.003. Furthermore, compared to FastICA, RobustlCA showed better separation robustness. Experimental results showed that RohustICA was successful to apply to the speech signal separation, and showed superiority to FastlCA in speech separation.
基金Supported by National Natural Science Foundation of China(Grant No.51775410)Science Challenge Project of China(Grant No.TZ2018007).
文摘The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information.However,the separation performance depends largely on the construction of reference signals.To improve the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed,the reference-based cubic blind deconvolution algorithm is proposed in this paper.The proposed algorithm can be combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration.The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function is theoretically proved.By deriving the optimal step size of gradient iteration under the new contrast function,we propose an efficient adaptive step optimization method.Furthermore,the contribution evaluation method based on vector projection is presented to implement the source contribution evaluation.Numerical simulation analysis is carried out to validate the availability and superiority of this method.Further tests given by the simulated satellite experiment and satellite ground experiment also confirm the effectiveness.The signals of control moment gyroscope and flywheel were extracted,respectively,and the contribution evaluation of vibration sources to the sensitive load area was realized.This research proposes a more accurate and robust algorithm for the source separation and provides an effective tool for the quantitative identification of the mechanical vibration sources.
基金the National Natural Science Foundation of China under Grant Nos.40105012,and 49928504,and the CAS Key In-novation Direction Project under Grant No.KZCX2208.
文摘More and more new types of observational data provide many new opportunities for improving numerical weather forecasts. Among these, the GPS (Global Positioning System) bending angle is undoubtedly very important. There are many advantages of the GPS bending angle, such as high resolution, availability in all weather conditions, and global data coverage. Thus it is very valuable to assimilate GPS bending angle data into numerical weather models. This paper introduces how to obtain and assimilate the GPS bending angle. There are two methods of assimilation: the indirect method and direct method, and they are both introduced in this paper. During the minimizing process of variational assimilation, calculation efficiency is very important and the optimal step size greatly influences the algorithm efficiency. Based on the characteristics of the minimizing algorithm, we obtain an adaptive method for calculating the optimizing step suitable for all kinds of minimization algorithms through mathematical deduction. Finally, a numerical variational assimilation experiment is performed using the GPS bending angle data of 11 October 1995. The numerical results indicate the validity of the variational assimilation method and the adaptive method introduced here.
基金The National Basic Research Program (973) of China (No. 2005CB321804)
文摘An improved scalar Costa scheme (SCS) was proposed by using improved Watson perceptual model to adaptively decide quantization step size and scaling factor. The improved scheme equals to embed hiding data based on an actual image. In order to withstand amplitude scaling attack, the Watson perceptual model was redefined, and the improved scheme using the new definition can insure quantization step size in decoder that is proportional to amplitude scaling attack factor. The performance of the improved scheme outperforms that of SCS with fixed quantization step size. The improved scheme combines information theory and visual model.
基金the National Natural Science Foundation of China (No. 10632030 and10572119)the Fundamental Research Foundation of NPUthe Scientific and Technological Innovation Foundation for teachers of NPU
文摘Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.