The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image...This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.展开更多
Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,t...Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.展开更多
Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as hei...Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.展开更多
Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated thro...Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.展开更多
目的探讨影像采集参数优化与冠状动脉造影辐射剂量和影像质量的相关性。方法选择2022年1月至2024月1月于宁波市医疗中心李惠利医院择期行经皮冠状动脉造影患者60例,采集患者的基本信息和身材数据,根据身体质量指数(BMI)值分为3个组,各BM...目的探讨影像采集参数优化与冠状动脉造影辐射剂量和影像质量的相关性。方法选择2022年1月至2024月1月于宁波市医疗中心李惠利医院择期行经皮冠状动脉造影患者60例,采集患者的基本信息和身材数据,根据身体质量指数(BMI)值分为3个组,各BMI组患者随机分入常规模式组(冠状动脉模式采集影像:Cardiac Left Coronary,15帧/秒)和优化模式组(电生理模式采集影像:Cardiac EP,7.5帧/秒),收集辐射剂量数据,并根据影像质量评分表评估影像质量。两组间比较采用独立样本t检验、Mann-Whitney U检验,多组间比较采用单因素方差分析,相关性采用Pearson相关分析。结果患者BMI值越高,胸围越大,辐射剂量越高,呈正线性相关;各BMI组内,优化模式组的各项辐射剂量数据(各类型剂量面积乘积、空气比释动能及胸部皮肤剂量)均低于常规模式组(均P<0.05,降低比率48.95%~70.59%),两组间的影像质量评分差异无统计学意义(P>0.05),均符合手术要求。结论经皮冠状动脉造影的辐射剂量受患者身材、影像采集参数、曝光时长等诸多因素的综合影响,通过优化影像采集参数可在保证影像质量的同时实现辐射低剂量化,减少患者和术者的辐射危害。展开更多
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
文摘This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.
基金National Natural Science Foundation of China(No.41701534)Open Fund of State Key Laboratory of Coal Resources and Safe Mining(No.SKLCRSM19KFA01)+1 种基金Ecological and Smart Mine Joint Foundation of Hebei Province(No.E2020402086)State Key Laboratory ofGeohazard Prevention and Geoenvironment Protection(No.SKLGP2019K015)
文摘Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.
文摘Block adjustment for satellite images cannot be solved with weak convergence geometric conditions,therefore a plane block adjustment method to improve the targeting precision of images is proposed utilizing DEM as height constraint plane block adjustment method.First,a rational function model with affine transformation is selected as the mathematical model of the satellite image plane block adjustment.Second,to update the ground coordinates of tie points(TPs),the plane coordinates of TPs are only solved in the adjustment process.Elevation values are obtained by using DEM interpolation.Finally,the plane coordinates of all TPs and orientation parameters of all satellite images are solved through plane block adjustment with a few ground control points ZY-3 nadir images for two regions are tested for plane block adjustment while ZY-3 forward-nadir-back images of the same two regions are tested for stereo block adjustment.A comparison indicates that almost the same accuracy can be obtained with plane block adjustment support using a 1∶50 000 DEM and stereo block adjustment for ZY-3 images.For ZY-3 nadir images,almost no loss of plane block adjustment accuracy occurred when global DEM with 1 km grid and SRTM with 90 m grid replaced the 1∶50 000 DEM as elevation control,.Test results demonstrate the effectiveness and feasibility of the plane block adjustment method.
文摘Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.
文摘目的探讨影像采集参数优化与冠状动脉造影辐射剂量和影像质量的相关性。方法选择2022年1月至2024月1月于宁波市医疗中心李惠利医院择期行经皮冠状动脉造影患者60例,采集患者的基本信息和身材数据,根据身体质量指数(BMI)值分为3个组,各BMI组患者随机分入常规模式组(冠状动脉模式采集影像:Cardiac Left Coronary,15帧/秒)和优化模式组(电生理模式采集影像:Cardiac EP,7.5帧/秒),收集辐射剂量数据,并根据影像质量评分表评估影像质量。两组间比较采用独立样本t检验、Mann-Whitney U检验,多组间比较采用单因素方差分析,相关性采用Pearson相关分析。结果患者BMI值越高,胸围越大,辐射剂量越高,呈正线性相关;各BMI组内,优化模式组的各项辐射剂量数据(各类型剂量面积乘积、空气比释动能及胸部皮肤剂量)均低于常规模式组(均P<0.05,降低比率48.95%~70.59%),两组间的影像质量评分差异无统计学意义(P>0.05),均符合手术要求。结论经皮冠状动脉造影的辐射剂量受患者身材、影像采集参数、曝光时长等诸多因素的综合影响,通过优化影像采集参数可在保证影像质量的同时实现辐射低剂量化,减少患者和术者的辐射危害。