A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chose...A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chosen as vision features. The algorithm is shown as follows. Firstly, color saliency is calculated on superpixel scale. Color space distribution of the superpixel and the color difference between the superpixel and background pixel are used to describe color saliency and color salient region is detected. Then, the classic visual background extractor (Vibe) algorithm is improved from the update interval and update region of background model. The update interval is adjusted according to the image content. The update region is determined through non-obvious movement region and background point detection. So the motion region of stereoscopic video is extracted using improved Vibe algorithm. The depth salient region is detected by selecting the region with the highest gray value. Finally, three regions are fused into final ROI. Experiment results show that the proposed method can extract ROI from stereoscopic video effectively. In order to further verify the proposed method, stereoscopic video coding application is also carried out on the joint model (JM) encoder with different bit allocation in RO| and the background region.展开更多
We propose a disparity-constrained retargeting method for stereoscopic 3D video, which simultaneously resizes a binocular video to a new aspect ratio and remaps the depth to the perceptual comfort zone. First, we mode...We propose a disparity-constrained retargeting method for stereoscopic 3D video, which simultaneously resizes a binocular video to a new aspect ratio and remaps the depth to the perceptual comfort zone. First, we model distortion energies to prevent important video contents from deforming. Then, to maintain depth mapping stability, we model disparity variation energies to constraint the disparity range both in spatial and temporal domains. The last component of our method is a non-uniform, pixel-wise warp to the target resolution based on these energy models. Using this method, we can process the original stereoscopic video to generate new, high-perceptual-quality versions at different display resolutions. For evaluation, we conduct a user study; we also discuss the performance of our method.展开更多
基金supported by the National Natural Science Foundation of China (61201236)National Key Technology Support Program (2012BAH01F04)Beijing Key Laboratory of Science and Technology (Z141101004414045)
文摘A feature fusion approach is presented to extract the region of interest (ROI) from the stereoscopic video. Based on human vision system (HVS), the depth feature, the color feature and the motion feature are chosen as vision features. The algorithm is shown as follows. Firstly, color saliency is calculated on superpixel scale. Color space distribution of the superpixel and the color difference between the superpixel and background pixel are used to describe color saliency and color salient region is detected. Then, the classic visual background extractor (Vibe) algorithm is improved from the update interval and update region of background model. The update interval is adjusted according to the image content. The update region is determined through non-obvious movement region and background point detection. So the motion region of stereoscopic video is extracted using improved Vibe algorithm. The depth salient region is detected by selecting the region with the highest gray value. Finally, three regions are fused into final ROI. Experiment results show that the proposed method can extract ROI from stereoscopic video effectively. In order to further verify the proposed method, stereoscopic video coding application is also carried out on the joint model (JM) encoder with different bit allocation in RO| and the background region.
基金supported by the National Basic Research Program of China under Grant No. 2011CB302206the National Natural Science Foundation of China under Grant Nos. 61272226 and 61272231Beijing Key Laboratory of Networked Multimedia
文摘We propose a disparity-constrained retargeting method for stereoscopic 3D video, which simultaneously resizes a binocular video to a new aspect ratio and remaps the depth to the perceptual comfort zone. First, we model distortion energies to prevent important video contents from deforming. Then, to maintain depth mapping stability, we model disparity variation energies to constraint the disparity range both in spatial and temporal domains. The last component of our method is a non-uniform, pixel-wise warp to the target resolution based on these energy models. Using this method, we can process the original stereoscopic video to generate new, high-perceptual-quality versions at different display resolutions. For evaluation, we conduct a user study; we also discuss the performance of our method.